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1.  Basic Orbits

1.1  Why circles?

Copernicus was right: the earth and the other planets do orbit around the sun. However, he
was still operating under the assumption that all the celestial bodies had to move in perfect

circles. This turned out to be a rather major flaw in the framework.

Other astronomers of the era were unable to match the predictions of the Copernican system

with observations. More 'tweaks' were added to the Copernican systems of circular
heliocentric orbits in order to 'save the appearances'. In order to make the model match with
observations, they still had to employ epicycles and so forth. However, the seed was planted.

The sun should be at the center!

1.2  Tycho Brahe

Late 16th century. Hybrid system: geoheliocentric model had the planets going around the sun, but the sun still went around
the Earth. Close...

The Copernican System

consisted of circular orbits

centered around the sun.
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1.3  Johannus Kepler

Kepler played a major role in the 17th-century scientific revolution. He is best known for his
laws of planetary motion, based on his works Astronomia nova, Harmonices Mundi, and

Epitome of Copernican Astronomy. These works also provided one of the foundations for
Newton's theory of universal gravitation.

1.4  Kepler's 3 laws of orbiting bodies

1. A planet orbits the sun in an ellipse. The Sun is at one focus of that ellipse.
2. A line connecting a planet to the Sun sweeps out equal areas in equal times

3. The square of a planet's orbital period is proportional to the cube of the average distance between the planet and the

sun: .

Ellipses

Danish astronomer Tycho

Brahe [1546-1601]. Made

many very good
measurements of the stars and

planets.

German mathematician,

astronomer, and astrologer.

[1571-1630] Kepler was

Tycho's assistant and was
believed in the Copernican

system.
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An ellipse satisfies this equation:

 is the semi-major axis

 and  are the distances to the ellipse from the two focal points,  and .
 represents the eccentricity of the ellipse ( )

The semi-major axis is one-half the length of the long (i.e. major) axis of the ellipse.

Conic Sections

The circle is one of several conic sections. (There's really nothing all that special about circles.)

See Appolonius - On Conics.

Elliptical Orbits

The first law for Kepler holds that the orbiting body (i.e. planet) will trace out an
elliptical path as it orbits the central body (i.e. the sun). The central body is located at
the principle focus. When the distance between the planet and the sun is the

shortest, the planet is said to be at perihelion, or the point of closes approach. When
that distance is greatest, the planet is located the aphelion.

Polar Coordinates

The polar coordinate equation can be obtained by starting with the basic ellipse equation Eq.  Take the point at the top of

the semi-minor axis, where . Since  we know that . Using the Pythagorean theorem, we can say
that:

principle
focus

aphelion perihelion

orbiting
body

central
body
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Putting  in for  yields:

Or, to have it more explicitly as the ratio of the two axes:

For polar coordinates, we'll use  and ,  being the distance from the principle

focus and  the angle measured counterclockwise from major axis of the ellipse.
Again, from Pythagorus:

Expanding the 2nd RHS term:

and using the fact that , we can obtain the polar equation for the

ellipse shown above in eq .

Deviation from a Circles
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Mars' orbit [ ] looks a lot like a circle.

Equal Areas in Equal Times

Kepler's second law describes the areas swept out by an orbiting planet in a given

time and says that for any given interval of time, the areas swept out will always be
equal.

The other conics

Parabolas: 
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Ellipse - the point where 
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Ellipse - and polar coordinates  and .

focus

t1

t2
area

orbiting
body

focus

t1

t2
area

The blue areas in these figures will be the

same if  is the same.
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Hyperbolas: 

C/2023 E3 ZTF

Astronomy Picture of the Day

C/2023 E3 ZTF

APOD of the comet

Lookup the comet in the small body database

https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?des=2022%20E3

https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?des=2022%20E3
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Small Body Database

2.  Newtonian Mechanics

3.  Newton's Laws

In words:

1. No change in velocity if there is no net force acting.

2. The net force acting on a body will cause a proportional acceleration inversely proportional to the mass of that body.
3. Forces come in equal and opposite pairs

In symbols:

1.  if 
2. 

3. 

3.5  Law of Gravitation

The scalar form:

And in vector form:

This is Newton's Law of Universal Gravitation. It considers two masses:  and  and the distance between them . Also

included is , the Universal Gravitational Constant. (  m  kg  s  From nist http://physics.nist.gov/cgi-

bin/cuu/Value?bg). The direction of the force is always attractive and is along a line connecting the centers of the two masses.

 is the force applied on object 2 by object 1. 

 is the distance between the two objects ( ) 

And  is the unit vector pointing from object 1 to object to 2.

3.6  The shell theorem.

Show that a spherical mass (of density ) acts as a point mass for objects outside.

1 2

Two masses and a gravitational

interaction

3 -1 -2

Cavendish

Example Problem
#1:

http://physics.nist.gov/cgi-bin/cuu/Value?bg
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Consider a mass  a distance  away from the center of a spherical mass . The
radius of the spherical mass is . First, the force from the ring which a mass 

is:

We can re-express the mass of the ring in terms of its density . (The density is

at most only a function of the radius, i.e. spherically symmetric)

The volume of a ring is just its thickness: , times its width: , times its circumference:  which equals:

The  can be expressed as:

and  can be written as the following (from Pythagorus)

Let's put all these back into the force from the ring:

Then, we'll have to integrate over both variables.  will range from 0 to  and  from 0 to  to get all the rings that

make up the entire sphere.

Integrating over  yields:

However, the mass of a shell of thickness  is just:

which is just quanity inside the integrand. Thus the force from on shell will be,

This force acts as if it is located at the center of the shell.

We can then integrate over all the mass shells and the above becomes:

The Shell Theorem
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which is just the equation for the force between two point masses.

little g

Let's consider the gravitational force a distance  above the surface of the earth. Since , we can see that the

acceleration  will be equal to:

We generally call this value 'little g'.

little  is not the same everywhere.

Example Calc NB →

3.7  Work and Energy

The change in potential energy is given by the negative of the work done by gravity.
Expressing it in the integral above allows for changing force as a function of position

(in contrast to the elementary definition: 

4.  

Find the work done on an object by gravity as it moves from point  to infinity, where the potential energy is defined as 0.

gravity anomalies measured by GRACE

NASA/JPL/University of Texas Center for
Space Research

z

x

y

M

r i

r f

drm

F

A point mass  moves from  to  in a

gravitational field.

https://colab.research.google.com/drive/1g3QmAbzhU5PeIJV0U3xRyqNSwbQ1cGO4?usp=sharing
https://grace.jpl.nasa.gov/resources/6/grace-global-gravity-animation/
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The force is always against the displacement, so

We can pull the constants out of the integral, and we are left with something very

simple to integrate:

Evaluating at the limits of  and , we see that the work done is:

From the original definition of work and potential energy:

thus, since  we can say:  And now we have a potential energy function for masses at a distance  from the
center of the Earth:

4.8  Potential Plot

4.9  Escape Speed

How fast to get something to reach infinity, (and stop there)?

This is the total energy of a particle: kinetic plus potential. Since the particle will be at  and will have stopped then the

total energy must be zero. However, due to conservation of energy, the total mechanical energy will be the same. Thus, 

 at all times. Or:

which leads to

What is the potential energy at point ?

r

U

The potential energy as a function of

position for a body in a gravitational
interaction.
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For Earth,  = 11182.4 m/s. Apollo 11 traveled at 10423 m/s [nasa ref]. It got a little help from the moons gravity too.

5.  Kepler's Laws

5.10  Cartesian & Polar Coordinates

In polar coordinates, we have different unit vectors:  and .

and

We can also express some derivatives:

And using the chain rule, we can also express time derivatives:

These will be useful later.

5.11  2nd Law

y

x

z

y x

m

θ

r

θ

cartesian polar

Polar Coordinates  and .

y

x
θ

r
θ

https://history.nasa.gov/SP-4029/Apollo_18-24_Translunar_Injection.htm
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To prove the second law, we can show how Conservation of Angular Momentum results in the equal areas in equal times
statement.

Angular Momentum

where 

Take the time derivative of 

But, this is quickly seen to be zero for a central force:

The total area is the sum of the two triangles:

Thus, in the limit of :

Next, take the time derivative of the changing area:

which shows the area in a given time is constant.

5.12  1st Law - Ellipses

The angular momentum per unit mass will be given by:

and the centrally directed gravitational force is given by:

The acceleration of the orbiting body is therefore:

but

r

vt∆ t

vr∆ t

M m

m

Motion's of an orbiter during a short time
interval 
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We can put eq  into the acceleration equation 

Combining this with 

Integrating both sides of this equation yields:

The  is a constant of integration that depends on the initial conditions, which we may choose.

We'll say that at , the orbiter is at perihelion and we can orient the axes so that

its motion is entirely in the +y direction, in other words:  where  is a
constant. Now:

We can take the dot product with  of both sides:

Simplifying, using the definitions above (i.e. ):

( ) is the tangential velocity of the orbiter. From the definition of angular momentum: 

which when put back into , yields:

or solving for :

This is just the polar coordinates expression for a conic section.

6.  Third Law

Special Case: Circular orbits

For example, for an object orbiting the earth, we can write:

We can solve this for , the speed of the orbiting object:

y

x

sun

The initial conditions of an orbiting body.
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Now we can use the gravitational force to calculate the expected period:

which can be solved for :

Kepler figured out a version of this relationship before Newton:

The period is proportional to the three-halfs power of the orbital radius.

General Case (i.e. ellipses)

7.  Special Orbits

7.13  Low Earth

Most of our satellites are located in Low Earth Orbit. Roughly defined as less than
2000 km above the surface of the Earth.

Orbital Periods there range between 93 minutes and 127 minutes (for circular orbits)

Calc Demo: →

Wayfinder: Link →

7.14  Geostationary

7.15  Earth and Moon

Low Earth Orbit

GeoStationary

Earth and Moon to scale

https://colab.research.google.com/drive/18Vnt8arGyTOchHmr4asdNpuGdyojW5c2?usp=sharing
https://wayfinder.privateer.com/
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7.16  Hohmann Transfer Orbit

The semi-major axis of the transfer orbit:

8.  Lagrange Points

The basic free body diagram showing the forces on a small body near two larger

ones.

There are five Lagrange points. Some are interesting for technology applications.

8.17  Find L1

The sum of forces acting on the earth is equal to its mass time the acceleration, which for an object moving in a circular orbit is

centripetal and equal to :

Thus we can say:

but, based on the relation between speed and period, :

Sun EarthMars

Transfer orbit

2*atransfer

launcharrival

A typical Homann Transfer Orbit

Fsun Fearth

object
sun earth

R

r

The basic FBD and L1 point

sun L1L1 L2L2

L4L4

L3L3

L5L5

All 5 Lagrange points
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or

So we can rewrite as:

Rearranging yields Kepler's Third Law

Now consider the sum of forces on the satellite:

This we can simplify to, using Kepler's Third law for the satellite:

or

Lastly, since we want their periods to be the same: 

If we put in the masses of the two major bodies, the Earth and Sun for example, we can calculate the value of  in terms of .
For our earth-sun system, the L1 point would be located at

or about 1/100 of the earth-sun distance. Changing signs in the sums of forces could allow to calculate the L2 and L3 positions
as well.

9.  The Virial Theorem

The Virial theorem shows that for a gravitationally bound system in equilibrium, the total energy is one-half the time averaged
potential energy.

Consider the quantity .

where  is the linear momentum and  the position of some particle . The product rule gives the following if we take the

time derivative of the right hand side.
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We could also say:

where  is the moment of inertia of the total number of particles:

Now,

Thus:

where we have used the 2nd law of Newton ( )

Let  represent the force of interaction between two particles in the system. The force on  due to . If you have a particle ,

then we need to add up the force contributions from every other particle  where .

We can re-write the position of the th particle as:

which leads to

Since the 3rd law of Newton says: , the first term on the R.H.S. in the above equation will be zero. Thus:

Assuming only gravitational interactions:
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we can write

The potential energy  between the  and  particles is just the term in the sums:

Thus,

Now we can fill out eq: 

where we have replaced all the quantities with the time averaged values. The average of  is going to be:

but for periodic motions like orbits:

So

which leads finally to

or in terms of the total energy 

The Virial Theorem
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or in terms of the total energy 

The Virial Theorem: Uses

It allows for statistical results for many body systems.

For example, with galaxies: Since  and , we can obtain:

which relates two observable values,  and , with a non observable, but very interesting value, the mass of the galaxy.

9.18  The Vis Viva equation


