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1. Generalized Momenta
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4. Oscillations around equilibrium
2. More Examples

1. Double Pendulum

1.  Generalized Momenta

For a simple, free particle, the kinetic Energy is:

Take the derivative of  w.r.t  :

This looks like momentum.

Thus, for generalized coordinates , we can also have a generalized momentum

The Lagrangian equations can then be written as simply;

But what if a particular Lagrangian is missing one of the  dependencies?

1.1  Conservation of ...

In that case, we can quickly see that the generalized momenta of that coordinate doesn't change w.r.t time:

Which implies that that particular generalized momentum is a conserved quantity!

(Such a coordinate is called cyclic or ignorable)

1.2  2d with central force

The Lagrangian for a particle confined to a plane with a central force was:

The 2 coordinates required 2 Lagrange Equations
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and

Evaluating these results in two acceleration terms: , and 

1.3  Central Force, with a Spring

Let's put a specific force in there. How about a spring? The potential of the spring is easy to write:

Thus, the Lagrangian becomes:

This will affect the outcome of the  equation:

The momentum in the  coordinate

(Which is really just the angular momentum)

But, because  is a cyclic coordinate, then we know that angular momentum is conserved.

therefore:

Solving these two equation simulataneously (i.e. eliminating )

leads to:

where  as usual.

What does this do for us?
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Normally, contributions that are position dependent only, can considered as some sort of potential.

Thus, we can introduce an effective potential: 

The second term is recognizable as the potential from the spring, but the first term is really a bit of the kinetic energy that only

depends on position. We lump those two together and call it an effective potential.

Plots of

for different  values.

What does it mean when ?

These are equilibrium points in . (i.e. ). Small displacements will lead to
oscillations about the equilibrium points.

1.4  Oscillations around equilibrium

If we expand our  using Taylor:

The third term looks like a Harmonic Oscillator Potential:

where we have a new effective spring constant: 
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 plots for different  values.

The summation of two potentials
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The frequency of small oscillations there is then just:

Thus for our mass/spring 2d system:

The first derivative:  is

and thus our equilibrium value for  is where this zero, or:

The second derivative:

Evaluate this at  :

Thus

Thus, our frequency about the equilibrium position is:

Now, compare to rotational frequency:

Use the equilibrium radius:

Ueff

q

polynomial fit

original function equilibrium point

An effective potential with an stable

equilibrium point.
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The rotation frequency is:

So, the rotational frequency is the same as the natural frequency of the spring/mass:

Therefore the radial oscillations are twice that of the rotational frequency, which implies that the orbits are closed, meaning it
will return to the starting point after each rotation.

2d spring Simulation

2.  More Examples

A bead with mass  is constrained to a circular hoop that rotates around the

vertical axis with speed . The bead's position is described by the angle .
Describe this system by solving the Lagrangian and noting any interesting aspects,

i.e. equilibriums.

First, to construct the Lagrangian, we need the kinetic and potential energy of the
bead. The bead is free to move about the radius of the hoop, which will have a

speed of . The other component of the bead's velocity will be due to the
rotation about the vertical axis. Based on the figure, this is just .
Putting these together to calculate the square of the velocity:

Thus the kinetic energy will be:

Setting the 0 point of gravitational potential at the bottom of the loop, the
gravitation potential of the bead is:

Thus our Lagrangian is:

Using:

Example Problem
#1:

θ

ω

ρ

R

Bead constrained to a loop

https://editor.p5js.org/jhedberg/sketches/XmmB7E9i0
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we can solve this

and

which leads to :

Clean up to make an equation of motion

Now, what to do with this. We can't solve it analytically with elementary functions to get a general  equation. But, we

can pick it apart a bit.

Equilibrium points (i.e. if you put the bead there, it stays there) can be found when

Thus:

So, if  then  and we have an equilibrium point (i.e. at the bottom of the loop). Like for , the top of the
loop.

Another case:

or

provided that 

2.5  Double Pendulum

Each mass can have an  coordinate given by:

Then we need to find the velocities (or )
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The potential energies of each ball can be taken as:

And therefore our Lagrangian:

Next, do the partial derivatives for  to obtain the equations of motion:

and :

Simulation

θ1

θ2

l1

m1

m2

l2

The Double Pendulum

https://editor.p5js.org/jhedberg/sketches/-m2ZLf8tW

