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|. Conservative vs. Non-conservative
I.I The Lagrangian

L=T-U (1)
This quantity is known as the Lagrangian. It is the difference between the kinetic and potential energies of a system.

Apply to Euler-Lagrange
OL dOL

o a0 @
leads to:
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F, =mi (5)
Do it for all three dimensions and you have
—VU =ma=F =ma (6)
2. Hamilton's Principle / Principle of Least Action
Ty tp
S[Qk(t)] Z/ dtL(t,Qh(h,---,(11,42a---)=/ L(taqkaq.k) (7)
t ta
When S is stationary, i.e.
23
65 =46 \ L(taqk7qk) =0 (8)

then the g (t)s will satisfy the equations of motions for the system between the boundary conditions.

2.2 Generalized Coordinates



Notes for Mechanics PHYS35100 - Lagrangian Mechanics
J. Hedberg, 2024

Find the Lagrange Equations for a particle moving in two dimensions under the

y
influence of a conservative force using polar coordinates
v =71+ rdd
First find the Lagrangian: L =T — U
r
The kinetic energy will be given as usual by
@
1 1 22
x T= §m1)2 =5m (1'"2 +1r2¢ ) 9)

The basic polar coordinate system and the potential can be written as:

U=U(r,9) (10)

thus L is:

L= %m (#+28")-vme) @)

First consider The 7 equation

mré” — ‘Z—I: = %(mf’) = m# (13)
The radial component of the force is just —8U /Or:
—%U =F, (14)

Thus:

F.=m (r - m’s2) (15)

which is recognizable as F;. = ma,

Next, The ¢ equation

oL d 0L
3% @ o 19
Which leads to:
oUu d .
__8¢ = E(mrz(ﬁ) (17)

From vector calc:
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ou
-~ —rF 18
g "o (18)
which is the torque, 7 and
mr?¢ (19)

is the angular momentum, L, thus, (17) can just be considered as

_dL

(where this L is angular momentum)

2.3 Force of Constraint

By reducing the number of coordinates, we can imply a 'force of constraint'

n Previously, we would model this as a particle subject to the force of gravity and a
o —— normal force. Now we can just say it exists in a 2d world, and we effectively
+x / % accomplish the same thing.

3 dimensions 3-1 = 2 dimensions

Such a constraint is called holonomic.

From 3 to 2 dimensions

Examples of Constraints

In this classic case, a naive application of Newton's Laws would suggest two
coordinates. However, since the block is constrained to the surface of the ramp,
there really is only one independent variable.

1 1
L=T-U= Emv2 -U= 5m.’i‘2 —mgzsina (21)

A mass on a ramp

Likewise, with the Atwood Machine, there really is only one coordinate.
Really, the string is a constant length, so

z1 + @3 + 7R =1 length of the string  (22)
which means that:

X Zy = —a1 + const (23)

. I and also:

Av,=-Av, > X n=on 29

So, letting 1 — @ Thus:

1 1 1
The Atwood Machine has 1 coordinate T= E'mllafl2 + 57771233'22 = E(ml + m2)3'32 (25)
and the potential energy:
U = —mygzy — magzy = —(my — mz)gx + const (26)
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Thus the Lagrangian is:

1
L=T-U= E(ml +my)3? + (my —my)gz (27)
Solving for eq of motion:
. m; — My
= —— 28
my + my 9 (28)

Pendulums are also great examples of systems with a constrain: the length of the
string doesn't change.

A regular pendulum and a double
pendulum.

3. Examples of Mechanical Systems:

Example Problem
#2:

We'll start by finding the Lagrangian for the simple pendulum of length R and mass
m. In cartesian coordinates, that would be:

1 2 1 =2 -2 52
T=§mv =§m(z + 9% + %) (29)
If we express that in polar coordinates:

_1 .2 242 | .2
T—2m(r + 7“0 +z) (30)

Two of these Three terms are zero, so we end up with:

1 .
T—om (R202) (31)
The gravitational potential is
U = mgR(1 — cosf) (32)

Thus, our Lagrangian will be:

L=T-U= %m (R202) — mgR(1 — cosf) (33)

Pendulum on a stationary support

Now we have singe degree of freedom, meaning there is only one coordinate, @ in
this case. That makes solving the Euler-Lagrange Equation straightforward:

- =0 (34)

Solving this:
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L . ..
%Z_ﬂ = %(mRW) = mR?0 (35)
and
L
Z_G = —mgRsin 6 (36)
Combining these two we have:
o g . _
0+ EsmG—O (37)

To construct the Lagrangian, we need to find the speed of the mass. We can find
x =A cos wt the position of the mass and then take the time derivative:

rm = (rz,7y) = (z + Isinf, —lcos6) (38)

Both & and 8 have non-zero time derivatives, but [ is a constant:

v =vi+vl=(2+ 10 cost9)2 + (lé sinl9)2 (39)
= 120% + &* + 2120 cos§ (40)

The potential energy can be found too: The gravitational potential is

U = —mglcos6 (41)

Thus the Lagrangian is:

Pendulum on Oscillating Support

L=T-U-= %m (1292 + &% + 2li0 cos0) + mglcosf (42)

Evaluate the Euler-Lagrange equation:

=S (43)

% (ml2é + mii cos ) = —mli6 sin @ — mglsinf (44)

which leads to:

10 + i cosf = —gsin 6 (45)

We know from the setup that £ = A cos wt, so

1§ — Aw? cos(wt) cos @ + gsin =0 (46)

5 In the case of only small angles, this simplifies to:
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0 + wib = aw® cos(wt) (47)

where wg = 4/g/landa = A/l

This is just a driven oscillator, that can now be solved using the standard methods.



