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1. Wave Equation:

1.  Connected Masses (  and )

Two masses can move horizontally. They are connected to each other and the walls
by 3 springs as shown.

consider the forces on mass 1:

consider the forces on mass 2:

This leads to 2 eqs. of motion.

1.1  Matrix Form

With the following definitions:

We can write:

How to solve this?

Assume a complex solution:

k1

x1 x2

m1 m2
k2 k3

Two masses,  and  connected via

three springs.
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note: 

Start with the equation of motion:

Replace  with our complex  and we obtain:

Canceling the exponential terms and re-arranging:

Now we ask, what do solutions to this equation look like?

Clearly,  could be zero, then we have the so-called trivial solution, i.e. nothing moves. Boring.

But if :

then we might have more interesting solutions.

2.  Equal  and 

Let's try a simple case, where the two masses are equal and the spring constants are all the same:

Our Matrix is thus:

Taking the determinant of this yields:

There will be two frequencies that create a 0

Thus we have two non-trivial solutions. Our next step is to find the motions that occur at these frequencies

2.2  Normal modes
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3.  First Normal Mode

Start with 

which leads to two equations:

that both imply 

if we say:

then we can write our complex solution  as:

The actual motion of the masses is then described by the real part of the above:

4.  Second Normal Mode

Now Choose 

which leads to two equations:

which implies 

if we say:

then we can write our complex solution  as:
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The motion of the masses is then described by the real part of the above:

4.3  General Solution

These are both solutions to

which means their sum is also also a solution.

Two Normal Modes
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An arbitrary plot for the general solution.
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Coupled Oscillators (2m,3k)

start
k = 1

Normal Mode 1 


Normal Mode 2 


Random

4.4  Physical Example

5.  Larger systems

Now, let's try it with the Lagrangian formulation:

Thus our  is:

After solving the Euler-Lagrange for this system:

CO O

M Mm

A Carbon Dioxide Molecule

k k k k

x1 x2 x2

More masses?
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Adopt exponential solutions:

Which leads to a 3 x 3 matrix version:

Taking the determinant of this and setting equal to zero:

Will lead to a polynomial

This can be factored:

if

then we have a root:

likewise:
if

then:

6.  The continuum limit
k k k k k k k

x1 x2 x3 x4 x5 x6
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The lagrangian for a mass  is then:

or:

Define a mass per unit length:

as well as the Young's Modulus:

and

Stress: is tension / Strain is extension per unit length

Thus:

Now, let 

Call  the displacement from equilibrium

From Taylor Series:

6.5  Wave Equation:

Replace the  with the velocity, .
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