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What do we do if we happen to be in a non-inertial frame?

|. Linearly Accelerating Frame
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a) A ball thrown sideways with an initial
velocity vg in a non-accelerating
ship/frame. b) the same trajectory from
inside the accelerating ship. c) the same
trajectory from out side the accelerating
ship.

Inertial Observer

The external observer will see the ball move in a straight line.
L=T—U=1m@M¢ﬂ
2

—2p which when processed will lead to:

t t+ At =0

The external observer sees no
acceleration in the motion of the ball
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The observer in the ship sees something
very different.

t+A\r @

The non-inertial observer sees a new
’
force: F'

Let r be the position in the inertial (external) frame, and r’ inthe ship (non-inertial)
frame. These can be related through the acceleration of the ship w.r.t the external
frame: ag:

r=r + %ast2 (3)
Velocities are likewise found to be (through differentiation w.r.t £):
v=v +a,t (4)
and acceleration:

a=a ta, (5)

In the inertial frame: ' = ma, or, considering the two frames:

So, for observers inside the non-inertial frame:

F=ma=m(a +a,) (6)
or, considering a new F'
F' =ma' =F —ma, (7)
F, =F+ Fpseudo (8)

This observed force, F is the sum of any real forces and the Pseudo-Forces created by the accelerating reference frame.

2. Meow

Example: effective gravity for the accelerating ship:

but

thus:

F=0 (9)
F' #£0=0—-ma, =ma’ (10)
a =-a, (11)
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In this simple case, we can call our pseudo-force, the effective gravity:
Eett = —as (12)
Everything can be done that same as before if we include this in our set-up.
What about the Lagrangian approach?
L=T-U (13)

where T" is the kinetic energy in the non-inertial frame, and U’ would include and pseudo-potentials:

1 . .
L= 3m (:1:'2 + y'z) — MGesry (14)

2.1 The pendulum in an accelerating frame

Find the Lagrangian for the non-inertial observer:

| L=T-U = %mR%Iz — mgegR(1 — cos ') (15)
\R
0
! Then crank out the E-L equation:
| m
IR A oL _d (00 1
T 00 dt\agd )
a
This leads to:
A pendulum in an accelerating d .
spacecraft ~mgeRsind — = mR* =0 (17)
or,
g+ 2sing =0 (18)

R

3. Rotating Frames

Assume vector AL is at rest in the rotating frame. As the frame rotates, the vector A.
will also rotate through an angle d¢. The change in A can then be expressed by the
cross-product:

dA
% dA =d¢ x A (19)
A ®

(d¢ points out of the page)

A vector in a rotating frame
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Now, what if A is also changing in the rotating frame?

dAy = dALe; +dop X A (20)
Next, consider the time derivatives:
dA dA
Al 48 L XA (21)
dt in dt rot
where w = %
Helpful to consider this an operator:
d
—| = 5| twx (22)
dt in dt rot

This can operate on any vector and will transform from one coordinate system to another: inertial -> rotating.

Now we express the velocity in the inertial frame in terms of the velocity in the rotating frame (let our position be r):

Vin = Voot + W X T (23)
Using this, we can construct the Lagrangian:
1 2
L= MV — U(r) (24)
1, 1 2
L= 5™MVin — U(r) = Em(vm'G +wxr) —U(r) (25)

Now for some vector math:

1 1 1
—m(Viot +w X )2 =—mv2, + mvye; - (W X T) + §m(w x r)?

2 2
=%mvfot + Mvyer - (W X ) + %mwzr2 — %m(w -r)?
The Binet-Cauchy identity:
(AxB)-(CxD)=(A-C)(B-D)—(B-C)(A-D) (26)

Thus, in the rotating frame, were we to construct a Lagrangian based on our measurements, we would obtain:

1 1 1
L= Emvfot + mvye - (WX T)+ Emw2r2 - Em(w 1)’ —U(r) (27)

2

. . 1
This is clearly not just mvy,

Find the equations of motion using the Lagrangian:

d ([ OL OL
() - (28)
dt 61’.':'01; a'r':ot
Here, ¢ implies 2, ¥, and 2 in the rotating frame.
1 2 1 2,2 1 2
L= 5 MWVrot + MVrot - (wxr)+ 5w — Em(w -r)" =U(r) (29)
So, taking the time derivative of 0f’ :
Oy
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d ( 8L ; dw ‘
E (8/,%::01; ) = mriot + m(w X Vrot) + m(E X r) (30)
1 2 1 22 1 2

L= 2 MVrot + Myt - (W X T) + 5w — §m(w 1) =U(r) (31)

For the R.H.S. (B‘ZI’ ): first rewrite one term as:

i
Tot

MVt - (W X T) = mr - (Viot X W) (32)

Now the Lagrangian is:

1 1 1
L=_-mv2, +mr: (vt X w) + Emwzr2 - Em(w .1)? —U(r) (33)

2
A-BxC)=B-(CxA)=C-(AxB) (34)
1 2 1 22 1 2
L= 5 MViot +mr - (Vrot X w) + SmwT — Em(w .r)" =U(r) (35)
Leads to:
. . . oU
8.L = m(Veot X W)k, +muw?ri, —m (w-r)w’ — (r) (36)
61"101.‘ a""l;ot

Thus our equation of motion in the rotating system is:

ma = mw’r — m (W T) Wy — 2m(w X Vot )rot — m(% X r) — Vit U(r) (37)
rot

Combine the first two terms:

MW Troy — M (W T) Wroy = —Mw X (W X T, (38)
(using a vector identity.)
Vector identity:
Ax(BxC)=(A-C)B-(A-B)C (39)
Finaaaaly,
Frot = Fin — mw X (w X 1), — 2m(W X Viot )0 — MW X T),p (40)
where Fiy, = —V ot U(r) is the sum of real forces acting in the inertial frame
What are these pseudo-forces?,
Frot = Fin —mw X (W X T),0; —2M(w X Viot) 0 —M(@W X T),0 (41)
) centrifugal 7 Corlolis S
4. Pseudo-Forces
4.2 Centrifugal
—mw X (W XT),, (42)
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R
R
[ —

Verify the direction of the centrifugal
pseudo-force

4.3 Coriolis
—2m (w X Viot) (43)
The Coriolis force acts when the object is moving in a direction that is not parallel to w
4.4 Euler
—m(d X T)yey (44)
This pseudo-force only arises when w is changing, i.e. the speed of rotation is changing.

[Sim from https:/sciencesims.com/sims/rotating-ref-frame/

5. Earth as rotating reference frame

Earth takes 24 hours to rotate once.

(Actually, a little bit less: sidereal day is 23h56'04")

<0

- 27 (366.5)
241 x 3600 s/h \ 365.5
=7.292 x 107° 571

The Earth Rotating on its axis

[Sim from https://sciencesims.com/sims/solar-vs-sidereal/]

The Centrifugal pseudo-force will be directed outward and proportional to the
distance from the rotation axis p.

Feent = —mw X (w X 1) (45)

rot

can be simplified to:

F=mQ?% (46)

Taking the radius at the equator to be 6378 km:

6.374 x 10% m x (7.292 x 107° s—l)2 =0.033914 m/s* (47)

Which is about 0.3% of the normal g.
Let p be the distance from the rotation

axis.


https://sciencesims.com/sims/rotating-ref-frame/
https://sciencesims.com/sims/solar-vs-sidereal/
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Thus, the effective gravity would be:

geit = g — 2*p (48)
The value of p depends on latitude, and you can easily see how at the poles, this contribution should be zero.

Since these are all vectors, we can see the effects on a plumb-bob hanging in the

north hemisphere:
=m@p

Foer =Fg — Fos (49)

Forces on a plumb bob in the northern
hemisphere

6. Coriolis

A cartesian set on the surface of the Earth.

Express €2 in terms of cartesian vectors:
Q =Q(Fcos A+ zsin ) (50)
A particle will have velocity components:
v =ak+ 9§+ 28 (51)
Thus we can compute the Coriolis pseudo-force vector:

Foor = —2mS X v (52)
=2mQ[(ysin A — 2cosA\) X — &sin A y + @ cos A 2] (53)

A cartesian set on the surface of the Earth.

If there is no vertical motion, i.e. 2 = 0:
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FCor, horiz = 2m{2sin A (yf{ - :Ey) (54)

butv = (&,9) = (vcos8,vsin ) so:

(north) =

F Cor, horiz = 2mS2 sin Av (sin 8% — cos 6§) (55)

~

or, in terms of the vector: @

FCor, horiz = —2mSsin pY) (56)
. 1. The Coriolis force therefore pushes moving objects the right of their velocity
# vector if sin A > 0 (i.e. northern hemisphere)

------ 2. The Coriolis force therefore pushes moving objects the left of their velocity vector

if sin A < 0 (i.e. southern hemisphere)

X (east)

The r and v and @ vectors

Hurricane Ida

6.5 Foucault Pendulum

The forces in the rotating frame of the Earth:

mi =T +mgy +m (2 xr) X 2+ 2mi x O (57)

Combine gg and m (£ X r) X £ to express in terms of the observed gravitational force:

mi = T + mg + 2mi x £ (58)

As usual, let's restrict ourselves to small oscillations
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Up (2) This let's us say that
T ~mg (59)
M\ 1 sinceT, =Tcosf~T
T North ) Next, we need to examine the x and y components
Looking at the figure:
East (x) Tz z Ty Yy
— =——and —=—— 60
T L TTL (60)
The Pendulum
therefore:
—mgx —mgy
Tz = L and Ty = T (61)
mi = T + mg + 2mi x Q (62)
Then we have two equations of motion, after some algebra
. —gT .
g=——+ 29Qcos b (63)
= _T — 2@ cos 0 (64)

0 is the colatitude of the experiment.
A little more cleaning up and we have:

E—29Q, +wiz =0 (65)
§+220, +wiy=0 (66)

w is the natural frequency of the pendulum: w = y/g/L and Q cos @ is the z-
component of the angular rotation of the Earth.

The €2, and colatitude angle 6.

Let's solve these.

& — 290, +wiz =0 (67)
§+28Q, + wiy=10 (68)

Start by defining a complex number:
n==x-+1iy (69)

And multiply the ¢ equation by %, then add it to the & equation:
i+ 2000 + u = 0 (70)
Now we have a second-order, linear, homogeneous differential equation.

9 This implies two indepedent solutions
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Try: n(t) = et

Leads to:

o —20,a—wi=0 (71)
or

a=in‘/Q§+w§ (72)
Thus:

n= Pl (01 elwot 4 Cze_iw"t) (73)
With z = A andy = 0 att = 0, the pendulum is released from rest (V9 = vyo = 0) and we can obtain:

A
CL=C=73 (74)

,'7 — e—iﬂzt (Cl eiwot + CZ e—’int)
att = 0, we can say from the initial conditions: 9(0) = A and 7(0) = 0
Thus, C1 + C = A and by taking the first time derivative:
—iQ, (Cl + 02) + iwyg (Cl — Cg) =0

Solving these two equation for Cy

01=§(1+2—;)z§ (75)
and
T A -
Since £, << wp we can safely make this approximation.
n(t) = «(t) + iy(t) (77)
= Ae ™%t cos wyt (78)

Foucault Pendulum - Time Lapse

https://www.youtube.com/watch?
v=xmqjokCwNQs



