Bowling Ball | 15 lb | 6.80389 kg | 8.595" | 0.218313 m | 79.3 m/s |
Basket Ball | x | 0.625 kg | 9" | 0.2286 m | 23.0 m/s |
From the notes, we obtained an analytical expression for $x(t)$: \begin{equation} y(t) = \frac{v_\rm{ter}^2}{g} \ln \left(\cosh \left(\frac{gt}{v_\rm{ter}} \right) \right) \end{equation} We can rearrange this for $t(y)$ to get the time it takes to fall a distance $h$. \begin{equation} t = \frac{v_\rm{ter}}{g} \textrm{arccosh} \left( e^\left( \frac{h g}{v_\rm{ter}^2}\right)\right) \end{equation} Putting in our numbers we find:
Bowling Ball | 2.24 s |
Basketball | 2.40 s |
import numpy as np
g = 9.8
rho = 1.204
cd = 0.47
def calc_vterm_imp(m,D):
gamma = (1/2)*rho*cd*(1/4)*np.pi
vterm = np.sqrt((m*0.45359237*g) /(gamma*((D*0.0254)**2) ))
return vterm
def calc_vterm_met(m,D):
gamma = (1/2)*rho*cd*(1/4)*np.pi
vterm = np.sqrt((m*g) /(gamma*((D)**2) ))
return vterm
print(calc_vterm_met(.625,0.2286))
def calc_time(m,D,h):
t = (calc_vterm_met(m,D)/g)*np.arccosh(np.exp(h * g/(calc_vterm_met(m,D)**2) ))
return t
print(calc_time(6.80389,0.218313,24.38))
print(calc_time(0.625,0.2286,24.38))
From Newton's 2nd Law: \begin{equation} m \overset{\bullet}{v} = - bv - cv^2 \end{equation} Separate the variables: $$ \frac{m dv}{\left(bv + cv^2 \right)} = -dt $$ Doing the integration will lead to: $$\frac{m}{b}\ln \left( \frac{v}{b+ cv} \right) = -t$$ and evaluating between $v_0, v$ and $0,t$. we can reach $$ v = \frac{bAe^{-bt/m}}{1-cAe^{-bt/m}}$$ $A$ is a constant given by the initial conditions: $$A = \frac{v_0}{b+c v_0}$$
Try plotting both. You can see in the short time, the $v(t)$ tracks with the quadratic drag. After long times, it begins following the linear drag function.
Consider the total energy at two times: \begin{equation} E = \frac{1}{2} m v_1^2 + \frac{1}{2}k x_1^2 \; \;\textrm{and}\; \; E = \frac{1}{2} m v_2^2 + \frac{1}{2}k x_2^2 \end{equation} Solving for $\omega^2 = \frac{k}{m}$ \begin{equation} \omega = \sqrt{ \frac{v_1^2-v_2^2}{x_2^2-x_1^2}} \end{equation}
Also, $E = \frac{1}{2}kA^2$ thus: \begin{equation} A = \sqrt{ \frac{x_2^2 v_1^2 -x_1^2 v_2^2}{v_1^2 - v_2^2}} \end{equation}
I'll use python to do the calculations
import numpy as np
import matplotlib.pyplot as plt
f0 = 1000
f1 = 989
omega0 = 2*np.pi*f0
omega1 = 2*np.pi*f1
beta = omega0*np.sqrt(1-(omega1**2/omega0**2))
print("The value for beta is then: "+str(beta))
Which results in a value for $\beta$ of 929.38
To figure out how many oscillations will happen before the amplitude decreases by half, we can use the fact that: $$e^{-\beta t_\rm{half}} = 0.5$$ and solve for $t_\rm{half}$.
tHalf = np.log(.5)/(-beta)
print("t_half is then given by: "+str(tHalf) +" s")
This leads to a value for $t_\rm{half}$ : 0.00074582 s
Knowing our period is around 1 millisecond, we can tell right away that not even one oscillation will occur before the amplitude is decreased by half. Plotting the damped oscillator equation confirms this.