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This paper examines, compares, and contrasts ideas about motion, especially the motion of a body
in a resisting medium, proposed by Galileo, Newton, and Tartaglia, the author of the first text on
exterior ballistics, within the context of the Aristotelian philosophy prevalent when these scholars
developed their ideas. This historical perspective offers insights on the emergence of a scientific
paradigm for motion, particularly with respect to the challenge of incorporating into this paradigm
the role played by the medium. VC 2016 American Association of Physics Teachers.
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I. INTRODUCTION

We bring forward a brand new science concerning
a very old subject.

There is perhaps nothing in nature older than
MOTION, about which volumes neither few nor
small have been written by philosophers; yet I
find many essentials of it that are worth knowing
which have not even been remarked, let alone
demonstrated.1

So begins the Third Day of Galileo’s dialogue, Two New
Sciences. The subject indicated is the motion of objects
dropped or thrown, which, in light of its importance for our
hunting ancestors, is very old indeed. It is also ancient in a
philosophical sense: Aristotle’s Physics, said by Martin
Heidegger to be “the fundamental book in western phil-
osophy,”2 and Aristotle’s On the Heavens3 are the primary
works referenced by Galileo, who, like many philosophers
before him, wrestled with Aristotle’s ideas. Aristotle’s
Physics deals with nature broadly defined, and the questions
it addresses are very different from those addressed by the
physics familiar to us. On first encountering it, Kuhn won-
dered, “How could [Aristotle] have said about [motion] so
many apparently absurd things?,” but this and similar
encounters eventually led Kuhn to his idea of shifting scien-
tific paradigms.4 Aristotle defines motion (Greek kinesis) as
“the actuality of what exists in potency, as such,”5 and he
identifies three kinds: “the one of quality, the one of amount,
and the one according to place.”6 Galileo’s analysis of the
last kind, local motion (Latin motus localis) as he calls it, in
Two New Sciences differs greatly from Aristotle’s (and
Galileo’s own youthful) analysis of it. One of the factors that
complicates any analysis of local motion is the (almost) inev-
itable presence of a resisting medium. Like Aristotle and
Galileo, Tartaglia, whose seminal work on ballistics made
him one of Galileo’s most influential precursors, and
Newton, whose principles of natural philosophy vastly
extended the reach of Galileo’s kinematics, dealt with the
resisted motion of a body in creative, perceptive, and power-
ful ways.

II. TARTAGLIA

Niccol!o Tartaglia (1500–1557) acquired his surname,
which means “stammer,” from a speech defect caused by
wounds inflicted by French soldiers. He overcame this and
other challenges to make substantial contributions to

renaissance science, including the first Italian translations of
Euclid and Archimedes, and the first solution of certain kinds
of cubic equations.7 Books I and II of Tartaglia’s Nova
Scientia8 (1537) present a mathematical theory of exterior
ballistics that remained popular well beyond Galileo’s death
a century later9 and is largely consistent with Aristotle’s
ideas on local motion. In Aristotle’s Physics, local motion is
either “by nature” or “by violence”: natural motion is the
movement of something by its own agency (like an animal
walking) or the vertical movement of “heavy” things down-
ward and “light” things upward to “their proper places”; vio-
lent motion results from the action of something else (like a
spear thrown by a hand).10 Furthermore, local motion “is ei-
ther in a circle, or on a straight line, or mixed.”11 Tartaglia’s
theory is founded on this “logic of contraries”:12 natural ver-
sus violent, and circular versus rectilinear, motion.

Nova Scientia adopts a Euclidean approach, deducing
propositions from definitions, suppositions, and axioms.
Book I begins by defining a “uniformly heavy” body as one
“which, according to the weight of the material and its shape,
is apt not to suffer noticeable resistance from the air” and
proceeds to define other terms applicable to such a body,
including natural and violent motion.13 His reference to
“shape” here shows clearly that Tartaglia, like Aristotle,14 is
aware of its effect on air drag. The meaning of “noticeable,”
on the other hand, is less certain. It may refer only to what is
noticeable at the level of ordinary experience (e.g., the drop-
ping of an object from a tower), but if taken literally it inva-
lidates his projection trajectory for a uniformly heavy body,
as noted below. Two (of the six) propositions in Book I,
asserting that uniformly heavy bodies accelerate in natural
motion and decelerate in violent motion, follow easily from
suppositions associating a body moving at greater speed with
greater impact (on an object struck) and axioms associating
greater impact with a body falling naturally from greater
height or moving violently through less distance.15 Another,
asserting the impossibility of “mixed natural and violent
motion,” is deduced from the inconsistency of simultaneous
deceleration and acceleration.16

Book II of Nova Scientia begins with definitions and sup-
positions describing the trajectory of a uniformly heavy pro-
jectile: the main claim is that any non-vertical trajectory not
terminated prematurely consists of two lines joined smoothly
by the arc of a circle, one line being the line of projection
(above or below the horizontal) and the other line vertical16

(see Fig. 1). Note that, although such a projectile “is apt not
to suffer noticeable resistance from the air,”13 this trajectory
differs noticeably from the direction-invariant trajectory
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with fore-aft symmetry that must occur in the absence of air
resistance. The first two parts of the trajectory, the line of
projection and the circular arc, represent violent motion, and
the last part, the vertical line, describes natural fall. Hence,
from propositions in Book I, the projectile decelerates from
the moment of its launch until it reaches the end of the circu-
lar arc and then accelerates as it falls straight down. The first
six (of the nine) propositions in Book II are simple geometric
consequences of this form of trajectory. Proposition VII
states that the violent portions of all trajectories with the
same projection angle are geometrically similar, but its proof
rests on an assumption equivalent to the proposition itself.17

Proposition VIII employs a peculiar “physical argument” to
assert that a projectile attains its maximum range when the
launch angle is 45!.18 Finally, Proposition IX claims that the
initial straight part of the trajectory of a body projected at
45! is about four times longer than that of the same body
projected horizontally using “the same motive power.”19

As with natural and violent motion, Aristotle drew a sharp
distinction between celestial and terrestrial phenomena. For
him, “only the movement of heavenly objects composed of
aether had a perfect regularity that allowed their motion to
be described mathematically,” while “mathematics, the con-
sideration of abstract quantities, was inappropriate to [terres-
trial] physics” (but see Ref. 23); this makes Tartaglia “an
important liminal figure in the transformation of Aristotelian
natural science … because he … blurred Aristotelian philo-
sophical categories” and adopted “new standards of mathe-
matical precision” for terrestrial motion, “cannonshot”
specifically; the “physics of projectile motion was a …
peripheral problem in the framework of Aristotle’s natural
philosophy, but cannon warfare gave the problem … new
urgency,” which allowed Tartaglia’s ideas to undermine
Aristotle’s authority.20 Moreover, Tartaglia used his geomet-
ric description of a cannonball’s trajectory in a non-literal,
abstract way—a modern, mathematical model. For example,
he remarked that “no [non-vertical] violent trajectory … can
have any part that is perfectly straight” owing to the ball’s
weight “which … draws it toward the center of the world,”
but he took the part of the trajectory “which is insensibly
curved to be straight, and that which is evidently curved… to
be part of … a circle.”21 Although this three-part trajectory is
strange, we will see in Sec. IV that it bears some resem-
blance to the trajectory of a cannonball. This, alongside the
general harmony of Tartaglia’s ideas and those of Aristotle,
the simplicity of his model, the consistency of Propositions
VII and VIII in Book II with Galileo’s parabolic trajectory,
the fact that he consulted with bombardiers, and the influ-
ence of Venice’s military commanders whom he addressed,8

may account for the persistence of his new science.

III. GALILEO

Galileo Galilei (1564–1642) was occupied with motion
for much of his career. In early manuscripts written while
teaching at the University of Pisa (1589–1592) and published
posthumously as De Motu,22 Galileo often contends with
Aristotle on the subject. In his Physics, Aristotle claims the
speed of a body in natural vertical motion is proportional
both to how “subtle” or “easily divisible” is the medium
through which it moves (i.e., speed is inversely proportional
to the medium’s density, presumably, or viscosity) and to its
“excess” of “heaviness or lightness.”23 Although “excess”
here is ambiguous, its meaning is clarified by Aristotle’s
own examples, such as his claim that “a mass of gold or
lead … is quicker in proportion to its size.”24 Galileo affirms
that a body’s “essential heaviness or lightness,” which he
equates to the body’s specific weight (i.e., the weight of a
given volume of the material making up the body), causes its
downward or upward motion and offers arguments that the
speed of motion varies as the absolute difference of the spe-
cific weight of the body and that of the medium; hence
two bodies of the same material (such as gold) but different
total weight move naturally through the same medium with
the same speed.25 This weight-buoyancy theory of natural
motion conflates speed with force (in Newton’s sense) and is
almost identical to a doctrine of G. Benedetti announced in
1553; Benedetti, unlike Galileo, cites (in arguing for this
doctrine) Book I of Archimedes’ On Floating Bodies,26 for
which the likely source is its translation in Tartaglia’s 1551
treatise on raising sunken ships; in fact, a remark in this trea-
tise on the speed of bodies sinking in water possibly inspired
the ideas of both Benedetti and Galileo.27 Notably, Tartaglia
taught Benedetti and, it is widely believed, O. Ricci, mathe-
matics teacher to the young Galileo.7

Aristotle’s Physics rarely addresses projectile motion; its
major claim is that the violent motion of a projectile is sus-
tained, temporarily, by the medium after contact with the
projector ceases.28 This claim was debated by later scholars.
Hipparchus (ca. 2nd century B.C.E.) proposed that projection
upwards impresses a self-exhausting force on the projectile
that sustains its upward motion for a time and impedes its
eventual downward motion, and J. Buridan (ca. 14th century
C.E.) conceived impetus, an impressed force that persists
unchanged unless the projectile’s motion is opposed or pro-
moted by other factors, such as the medium’s resistance or
the projectile’s weight; Buridan explained the acceleration of
a falling body using increments to its impetus caused by its
own weight.29 De Motu posits a theory of impressed force
like that of Hipparchus: the force impressed by throwing a
body “upward” or “downward” reduces its “heaviness” or
“lightness,” respectively, but not “its natural weight,” and a
dropped body has a “force impressed on it equal to its own
weight;” the impressed force “will finally be lost and the nat-
ural weight resumed,” so “acceleration will cease.”30 Hence,
acceleration is temporary in Galileo’s weight-buoyancy
theory on the speed of natural motion. A later chapter of De
Motu31 that links projection angle with how far a projectile
moves “on a straight line” indicates that Galileo subscribed
at this time to both Tartaglia’s image of a projectile’s trajec-
tory and Aristotle’s logic of contraries.32

Two New Sciences (1638) was composed by Galileo under
house arrest late in his life but is based on research done dec-
ades earlier. Written as a dialogue among three friends meet-
ing in the Venetian arsenal over a period of four days, the

Fig. 1. Tartaglia’s trajectory: a line at an acute angle to the horizontal and a
vertical line joined smoothly by an arc of a circle.
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science of material strength is the main topic discussed in its
first two days, the science of motion in its last two days. The
three participants in the dialogue are Salviati, Galileo’s
spokesman, Simplicio, an Aristotelian philosopher, and
Sagredo, a knowledgeable layman who often voices the
views held by Galileo earlier in his career.33 Galileo’s ideas
on motion in Two New Sciences differ from those in De
Motu in important ways. In the former, for example, Sagredo
explains the motion of a “heavy body hurled upwards” in
terms of “the force impressed upon it by the thrower” much
as De Motu does, but Salviati dismisses this and other
explanations of the “cause of the acceleration of natural
motion” as “fantasies” and advises that “[f]or the pre-
sent, … our Author [Galileo] … want[s] us to investigate and
demonstrate some attributes of … [naturally accelerated]
motion … (whatever be the cause of its acceleration).”34 As
this suggests, Two New Sciences advocates kinematic princi-
ples investigated by “actual measurement” and mathemati-
cally demonstrated as opposed to “hidden causes” uncovered
by “subtle verbal reasoning” common in the Aristotelian
tradition.33 Nevertheless, like De Motu, Two New Sciences
often uses causal explanations.35 One cause that Galileo, like
Tartaglia, considers is the “impact” of, say, “a sledge
fall[ing] on a pole” whose “effect” is measured by the depth
the sledge drives the pole into the ground: this “effect … [is]
greater … according as the height is greater from which the
impact is made; that is, according as the speed of the striking
body is greater,” says Salviati.36 Salviati provides another
causal explanation when he argues, as Tartaglia does, that
the “curvature of the line of the horizontal[ly fired] projectile
seems to derive from two forces, of which one (that of the
projector) drives it [the projectile] horizontally, while the
other (that of its own heaviness) draws it straight down,” lik-
ening these moving forces to the static forces acting on a
tightly stretched rope.37 In any case, unlike De Motu, many
of the results in Two New Sciences are supported by carefully
executed experiments, although much about these experi-
ments (as reconstructed from Galileo’s working notes) are
hotly debated.35 In one reconstruction based on his notes
from 1602–1604, Galileo found the time-squared law for dis-
tance fallen in a roundabout way (using his rule relating the
period of a small-amplitude pendulum to its length) by find-
ing “the length of the pendulum which swings through a
small arc to the vertical while a body falls [a given dis-
tance];”33 another, based on his notes from 1604–1609, has
Galileo discovering the parabolic trajectory of a projectile
using a ball rolling off a table, a discovery delayed until
Galileo discarded the idea that speed of free fall varies as
distance fallen.34,38

The Third Day of Two New Sciences opens with a Latin
treatise, On Local Motion, which includes a brief introduc-
tion and two theory-laden books, On Equable Motion39 and
On Naturally Accelerated Motion.40 The rest of the Third
Day consists of Italian dialogue that intersperses the second
book of the treatise and clarifies it, often with Salviati
schooling the other two speakers (e.g., see Ref. 34). This sec-
ond book assumes naturally accelerated motion is
“uniformly and continually accelerated” in that “in any equal
times, equal additions of swiftness are added on,” and pro-
ceeds to demonstrate Proposition I, which asserts that the
time in which a uniformly accelerated body moves some
distance from rest equals the time in which a body moves
equably the same distance at half the final speed of the accel-
erated body, and Proposition II, the time-squared rule for

distance moved by a uniformly accelerated body starting
from rest, which Galileo states as “the spaces run through in
any times whatever are to each other as the duplicate ratio of
their times.”41 Most of the remaining 36 propositions in The
Third Day involve times of descent on inclined planes, and
these rely on an earlier postulate that the speed acquired by a
body moving down an inclined plane with “all obstacles and
impediments removed” depends only on the plane’s vertical
height.42 Proposition IV, for example, asserts that the ratio
of descent times from rest on two inclined planes varies
inversely as the square root of the ratio of their heights.43

Another, Proposition VI, deals with inclined planes whose
cross-sections are chords of a vertical circle with one end at
the circle’s highest or lowest point: Galileo proves descent
times from rest on all such planes are equal, a surprising and
elegant result.

The Fourth Day of Two New Sciences contains the third
book, On the Motion of Projectiles,44 of the Latin treatise
begun in the Third Day, interspersed with Italian dialogue.
Proposition I describes the trajectory of a body projected hor-
izontally with “motion compounded from equable horizontal
and from naturally accelerated downward” motions as
“semiparabolic.” Its proof assumes the two components of
motion are independent and relies on Galileo’s inertial princi-
ple, “that whatever degree of speed is found in the moveable,
this is by its nature indelibly impressed on it when external
causes of acceleration or retardation are removed, which
occurs only on the horizontal plane.”45 In Propositions II–IV,
Galileo develops a geometric method for determining the
speed of a projectile at any point on its trajectory. This
method and two more propositions culminate in Proposition
VII, which asserts that of all semiparabolic trajectories with
the same “amplitude” (horizontal range), the projectile on the
trajectory whose “altitude” (initial height) is half its ampli-
tude reaches the end of its trajectory with the least speed; the
end of this trajectory is sloped at 45!, and Galileo, by cleverly
reversing the direction of motion, concludes that “maximum
projection” for a given initial speed is achieved with
“elevation of half a right angle.”46

Although the treatise On Local Motion presupposes the
absence of all impediments to movement, Two New Sciences
is set sharply apart from De Motu by a long discussion about
air resistance.47 The discussion begins with Simplicio, the
Aristotelian, objecting to Salviati’s views on two grounds:
the non-existence of a horizontal plane (on which motion
persists equably) equidistant at all points from the center of
the Earth, and “the impediment of the medium” that destroys
the equability of horizontal motion and the uniform accelera-
tion of vertical. Salviati deals quickly with the first, compar-
ing an artillery shot of four miles with Earth’s radius to show
that a horizontal plane is a valid abstraction, but acknowl-
edges that the second objection is “more considerable.” Air
resistance, he says, “is incapable of being subjected to firm
rules” due to “the infinitely many ways that the shapes of the
moveables vary, and their heaviness, and their speeds,” that
“to deal with such matters scientifically, it is necessary to
abstract from them,” and that for projectiles “of heavy mate-
rial and spherical shape, and … [others] of less heavy mate-
rial and cylindrical shape, as are arrows, launched by slings
or bows, the deviations from exact parabolic paths will be
quite insensible.” Salviati notes that a falling body “ought to
go on accelerating” but that eventually “the impediment of
the air … will reduce it to … equable motion” and that “this
equilibration will occur more quickly … as the moveable
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shall be less heavy.” This is a causal explanation: “air exer-
cises its force,” he says, and he describes some experiments
that reveal aspects of this force. He uses one experiment to
suggest that the air drag on a body is proportional to its
speed, and another to argue that “the force of gunpowder”
can shoot a ball at “supernatural” speed (i.e., exceeding its
“terminal speed” of fall in air).48 Salviati concedes “some
deformation” from a parabolic path occurs for a cannonball
fired at supernatural speed but claims no such deformation
occurs “in practicable operations” involving “mortars
charged with but little powder.” The final propositions, XII–
XIV, in The Fourth Day are associated with ballistic tables,
two of which give the amplitudes and altitudes of the semi-
parabolic paths of cannonballs fired at the same speed for
each degree of projection angle.49

IV. NEWTON

The study of motion is central to the Principia of Isaac
Newton (1642–1727) and a key application for the infinitesi-
mal calculus he devised. An early draft of Principia was
titled De Motu Corporum, and this remained the title of the
first two books of the published text. The third and final
book, De Mundi Systemate, investigates motion of various
kinds in the solar system.50 Galileo’s work significantly
influenced that of Newton,51 who acknowledges, following
the statement of his laws of motion, that Galileo used the first
two of those laws to find the time-squared rule for falling
bodies and the parabolic path of a projectile.52 While forces
lie near the periphery of Two New Sciences, abstract mathe-
matical descriptions of forces are fundamental to the meth-
odology of Principia.53 Book 2 of Principia deals with
motion in resisting fluids. Newton’s interest in such motion
stems partly from the Aristotelian tradition he inherited. That
he wrestled with that tradition as an undergraduate is shown
by an early notebook (ca. 1664) in which he rejects both
Aristotle’s notion about the surrounding medium and the
medieval idea of impetus as causes for the persistence of a
projectile’s motion.54 Moreover, Newton remarks that he has
“illustrated” the “principles of philosophy” set forth in
Books 1 and 2 using topics “that seem to be the most funda-
mental for philosophy,” including “resistance of bodies.”55

However, as Newton discredits Descartes’ vortex theory of
celestial motion in the last (of nine) sections of Book 2 and
in the General Scholium at the end of Principia, many take
this as his prime reason for writing Book 2.56

The first section of Book 2 investigates motion under
resistance proportional to speed, the relationship suggested
by Galileo.48 Extending earlier propositions on resisted
horizontal and vertical motion, Proposition 4 of Book 2 and
its corollaries address the motion of a projectile.57 In modern
notation, the problem considered in this proposition is
described by

dx

dt
¼ u ;

dy

dt
¼ v ;

du

dt
¼ # f sð Þ

s
u ;

dv
dt
¼ #g# f sð Þ

s
v ; (1)

where (x, y) is the position vector of the projectile, (u, v) its
velocity, s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

its speed, f(s)¼ ks (with k> 0 con-
stant) the magnitude of the resisting force on it per unit
mass, and g its natural downward acceleration in the fluid
medium (due to both gravity and the buoyancy caused by its

displacement of fluid). Taking the initial conditions as
ðx; yÞ ¼ ð0; 0Þ and ðu; vÞ ¼ ða; bÞ, where a > 0 and b are
constants, solving Eqs. (1) for x and y, and eliminating t
from the result yields

y ¼ bþ g

k

" #
x

a
þ g

k2
log 1# kx

a

" #
: (2)

Instead of deducing this Cartesian equation, Newton con-
structed the projectile’s path geometrically, representing
physical quantities as lines, ratios, and areas. He repre-
sents the initial velocity of a body thrown at point D as
line DP, the vertical component of the initial “resistance
of the medium … [relative] to the force of gravity” as
ratio DA:AC (where A is a point chosen on the horizontal
axis DC to make this so, and PC is the vertical axis), and
time elapsed as the area of region DRTG bounded below
by segment DR of DC, above by segment GT of a rectan-
gular hyperbola with asymptotes DC and PC, and on its
sides by vertical segments DG and RT (with R chosen
arbitrarily on DC); he gives instructions for finding r on
extended segment RT so that “curved line DraF” is the
projectile’s path “which point r traces out” (with a the
highest point of the path, segment Aa vertical, the path
intersecting DC at F “and afterward always approaching
the asymptote PC”). In Corollary 2 of Proposition 4, he
remarks that “it is easy to draw curve DraF with the help
of a table of logarithms.” Like Galileo, Newton wrote
mostly in the style of Euclid and Archimedes, but some-
times he used mixed ratios, modern algebraic expressions,
and relationships that hold only in limiting cases (e.g., of
“innumerable rectangles”).57

Newton remarks that the hypothesis of resistance propor-
tional to speed “belongs more to mathematics than to nature”
and that, in “mediums wholly lacking in rigidity” (i.e., rare-
fied fluids in which viscous forces are negligible compared
to inertia58), both the “quantity of the medium … disturbed”
and the momentum imparted to it by a moving body per
unit time are proportional to the body’s speed; thus, “by
the second and third laws of motion,” he argues, “resistances
encountered by bodies are as the squares of the velocities.”57

Section 2 of Book 2 examines motion resisted in this way,
culminating in Proposition 10, which tackles an inverse
problem: determine, given a curve, how the medium’s den-
sity must vary with position so that a projectile follows that
curve as it moves under gravity and drag, assumed to vary
jointly as the density and the speed squared; this inverse
problem typifies Newton’s method of using motions to deter-
mine “causes and effects.”53 He tries four sample trajecto-
ries: a semi-circle, a parabola, a hyperbola (with oblique and
vertical asymptotes to its ascending and descending parts,
respectively), and a generalized hyperbola (with similar
asymptotes).59 From the results, he infers that the projectile’s
trajectory in a uniformly dense medium “approaches closer
to these hyperbolas than to a parabola” and is itself “of a
hyperbolic kind” (i.e., the trajectory has oblique and vertical
asymptotes, like the hyperbolas he considers). Finally, he
states eight rules that describe hyperbolas (conic or general-
ized) approximating this trajectory under various (e.g.,
initial) conditions. It is curious that a semi-circle is one of
the sample trajectories Newton considers, as one piece of
Tartaglia’s trajectory is part of a semi-circle. More remark-
ably, Newton’s “hyperbolic kind” of trajectory, with its
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asymptotes, bears notable similarity to that of Tartaglia
shown in Fig. 1.

A “serious error” in Newton’s analysis for the semi-
circular trajectory in Proposition 10 of the first edition of
Principia had unexpected consequences. Johann Bernoulli
discovered the error and communicated it to Newton through
his nephew, Nikolaus Bernoulli, who was visiting London in
September 1712. Newton then tailored a long paste-up cor-
rection for the second (1713) edition, already printed, with-
out citing Bernoulli’s help, further fueling the calculus
priority dispute raging between mathematicians on opposite
sides of the English channel at this time. Bernoulli charged
that Newton did not understand higher derivatives (fluxions)
and their connection to infinite series, used extensively in
Proposition 10.60 Eventually, responding to a 1717 challenge
from Oxford professor John Keill to “[f]ind the curve which
a projectile describes” subject to gravity and fluid drag vary-
ing as the square of its speed,61 Johann Bernoulli found
an expression for this curve in the case of drag varying as
an arbitrary power of speed:62 Z ¼

Ð
ða2 þ z2Þn#1=2 dz; y

¼
Ð

aZ#1=n dz; x ¼
Ð

zZ#1=n dz, where the meanings of y and
x are the reverse of those in Eq. (1), the resistance of the me-
dium varies as the projectile’s speed to the power 2n 2 R,
and a is unspecified. A brief derivation follows. Letting
w ¼ v=u and taking f ðsÞ ¼ ks2n, Eq. (1) implies

dw

dt
¼#g

u
;

du

dw
¼ f sð Þ

gs
u2 ¼ k

g
u2nþ1 1þw2ð Þn#1=2

: (3)

Using the initial values ðu; vÞ ¼ ða; bÞ and a > 0 in Eq. (3)
yields63

u ¼ 1

a2n
# 2nk

g

ðw

b=a
1þ w2ð Þn#1=2

dw

" ##1=2n

: (4)

Also, dt ¼ #ðu=gÞ dw from Eq. (3), while dx ¼ u dt and
dy ¼ uw dt, so64

t ¼ # 1

g

ðw

b=a
u dw ; x ¼ # 1

g

ðw

b=a
u2 dw ;

y ¼ # 1

g

ðw

b=a
u2w dw : (5)

Bernoulli’s solution can be reconciled with Eqs. (4) and (5),
which express time elapsed and position as functions of
w ¼ v=u, the slope of the projectile’s trajectory. A local anal-
ysis near the fixed point for (u, v) shows w! #1 monot-
onically as t!1 if n> 0.63 For n¼ 1 and many other
values of n, Eq. (4) leads to an elementary expression for u
in terms of w.

Section 3 of Book 2 examines motion “resisted partly in
the ratio of the velocity and partly in the squared ratio of the
velocity.” The purpose behind this section becomes clear
when Newton states at the end of Section 3 that “resistance
encountered by spherical bodies in fluids arises partly from
the tenacity, partly from the friction, and partly from the den-
sity of the medium,”65 equivalent to representing fluid drag
as FD ¼ aþ bsþ cs2 for a body moving at speed s, where a
is the fluid’s tenacity, b its coefficient of viscous drag (due to
its internal friction or rigidity), and c its coefficient of inertial
drag (due to its density).58 Sections 6 and 7,66 essentially,
are intended to provide a theoretical and experimental basis

for determining values for the constants a, b, and c. Section
6 addresses the motion of pendulums in resisting fluids;
Newton hoped to measure the separate components of resist-
ance by observing the decay of pendulum motion, but in this
he was disappointed, later concluding that the sloshing of the
fluid induced by the pendulum opposed its motion and
increased drag significantly. The experiments in Section 7
were more successful; these involved timing the vertical fall
of spherical bodies in water and air, the most dramatic being
the dropping of glass balls (filled with air or mercury) and
inflated hog bladders in London’s St. Paul’s Cathedral. In
Section 7, Newton also derives expressions for the inertial
drag (in effect, expressions for the coefficient c above) of a
sphere in an inviscid, incompressible fluid of two kinds,
“rarefied” and “continuous.” Using his expression for a
“continuous” medium and his solution for the vertical fall of
a body resisted as s2 (Proposition 9), he then calculates the
theoretical outcomes corresponding to his observations of
vertical fall and finds good agreement between theory and
experiment, apparently allowing the possibility of measuring
the other drag components from the difference between theo-
retical and observed results.

In hindsight, Newton’s representation of the drag force is
flawed.53,58 The expression for FD above, with constant a, b,
and c, presumes the viscous and inertial components of
drag are independent when, in fact, they are intimately
linked via the character of the flow around the body, which
is determined at subsonic speeds for a body of given shape
and surface attributes by a dimensionless parameter, the
Reynolds number Re.67 Researchers now express the drag
on a given body in a Newtonian fluid of density q by
FD ¼ ð1=2ÞCDqAs2, where A is the body’s frontal area and
CD is a dimensionless drag coefficient that varies with the
Reynolds number, as determined by experiments on a scale
model, and more so with the Mach number M at transonic
and supersonic speeds.68 As yet, CD cannot be obtained from
theory, and Newton’s expressions derived in Section 7 for
the inertial drag (which, ignoring viscous drag, amount to
CD¼ 1 for a sphere and CD¼ 2 for a cylinder moving paral-
lel to its axis in a “rarefied” medium, and CD ¼ 0:5 for a
body of any shape in a “continuous” medium) are wrong;58

the theoretical drag (equivalent to CD ¼ 0:5) Newton used
for his comparisons with observations just happened (for the
Re values in his vertical fall experiments) to agree fairly
well with the actual drag. In fact, Newton’s assumptions of
an incompressible, inviscid fluid that slips tangentially on a
solid boundary lead paradoxically (as Jean d’Alembert
showed using theory decades later) to zero drag on a body of
any shape.53 On the other hand, Newton’s inertial drag
(cs2 in effect) closely matches the modern expression,
FD ¼ ð1=2ÞCDqAs2, since CD is roughly constant over wide
intervals of Re and M for many bodies,67,68 and Section 7
confirms that it varies jointly as fluid density and frontal
area.66 Moreover, Newton’s vertical fall experiments yield
CD values well within modern ranges. Sadly, historians have
mostly ignored these pioneering experiments and Book 2 in
general.58

We can now address Galileo’s claim that drag is negligible
for “practicable” mortar shots (see Fig. 2).48 Although linear
drag holds in air only for tiny particles at low speeds
(Re ! 1), Fig. 2 includes it for comparison; the terminal
speed in Fig. 2 was calculated from that of an iron shot,
assuming a cannonball with the same density and drag coef-
ficient.67 The launch speed, about half the speed of sound
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(near which CD is roughly constant), and launch angle in
Fig. 2 are appropriate for a mortar raining fire on a fortress.

V. SUMMARY AND CONCLUSIONS

We have followed a thread of thinking, from Aristotle to
Newton and beyond, about motion and the medium in which
it occurs. Aristotle realized that the medium plays a dual
role: it gives a body both resistance to motion and buoyancy.
With respect to the former, he knew it was affected by the
body’s shape,14 and he knew the latter (which exists in the
layers of water and air held to our planet by gravity) is deter-
mined by the body and the medium: wood, he writes, is
heavier than air but lighter than water.69 Within the context
of Aristotle’s ideas, Tartaglia created a plausible mathemati-
cal model of projectile motion, but the restriction of his
theory to “uniformly heavy” bodies16 suggests he was possi-
bly unaware that air drag causes the asymmetry in a body’s
trajectory. In De Motu, Galileo clarifies Aristotle’s concepts
of heaviness and lightness using the notion of specific
weight, but he wrongly identifies the speed of a body with
the difference between its specific weight and that of the me-
dium, and he ignores the medium’s resistance, as if it plays
no role.25

By contrast, the treatment of air resistance in Two New
Sciences is strikingly modern: the terminal speed of a falling
body is seen to result from a balance of gravity and drag, and
air resistance is said to be “incapable of being subjected to
firm rules,”47 an intuition borne out by current research.58 In
its understanding of drag, its extensive use of mathematics,
its empirical basis, and its attempt to renounce hidden causes
(such as the self-exhausting impressed force used in De
Motu), some have seen Two New Sciences as a paradigm
shift in thinking about motion.70 The emergence of the clas-
sical view of motion, however, was more an evolutionary
process than a sudden shift effected by one text or one per-
son. The seeds of this view were planted by occasional mus-
ings about local motion within Aristotle’s much larger vision
of nature as a whole; they were watered by Archimedes, me-
dieval scholars, Tartaglia, Galileo, and other scientists; and
they were brought to fruition by those who continued and
expanded these earlier efforts,71 Newton among them. Book
2 of his Principia truly created a new science of fluid resist-
ance, but he was a bit too optimistic about the firmness of
the rules governing it. Given its importance for physics and

real life, it’s surprising that oversimplified rules for fluid re-
sistance sometimes creep into physics textbooks. Here is one
example from my first undergraduate physics text, a sentence
that inspired my interest in fluid drag: “Over a wide range of
values of [velocity] v, this fluid frictional resistance is well
described by the following formula: RðvÞ ¼ Avþ Bv2 where
A and B are constants.”72

Galileo and Newton both helped to bring motion into the
“mathematical tradition” comprising such “classical scien-
ces” as astronomy and optics,73 and to create in the 18th
century “a near-perfect … fusion between mathematics and
mechanics, to the immeasurable advantage of both, and of
all physics and technology to come.”74 A nice example of
this fusion is Bernoulli’s solution for resisted motion,
which, beyond its mathematical beauty, bestowed harsh
military power. Using tables computed from this solution
for quadratic drag (n¼ 1), Leonhard Euler devised a
method75 used for mortar fire up to World War II;76 for
high-speed projectiles, others computed trajectories as a
sequence of arcs associated with different n values68 using
a piecewise smooth “drag function.”77 This, however, is
another story.
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