D T 3
‘\'uL‘(v« 1 = Dainde \el KHivae v ahgy

\ 3] ‘ |
=t At L , c\v,l‘x,ﬁ)‘ r A (e \\C/\t-"{pi\ 1= Yoavs o ‘/"‘

v

| & | |
av = a atl S ate WY
-
V v
((11 (g
Vi = & [IA, - \s e STean)
Vo 0
)

V= Vorat

\
Viow (Y.
\
A%
=i\
r r
A4
ax¥x = v av
X +
(B A
(x = [(veret) ot
A \

¢
‘
"
r
<
|
¥
p
g
i
S
N
\
f
L AT T T TSRS RS SR

~ Plot simple 1d kinematics

For CCNY PHYS 35100
Fall 2023
J. Hedberg

This notebook is found here:
https://colab.research.google.com/drive/T1XYIAg_pELYUnjXVZKiKqOQcB-sc7FW7q?usp=sharing

Let's plot some PHYS 20700 level kinematics, namely the speed and position of an object

dv

undergoing constant acceleration, i.e. —= = constant

Our first step is to import two libraries that will be useful: numpy, to handle variables in array
formats and mapplotlib to the plotting.

import numpy as np
import matplotlib.pyplot as plt

Our experiment involves one constant value: the acceleration of our particle. We can call it a and
give it a value of 5.

Define a variable to store the value of a

Now, we create a list (or array) of time values. The function np.linespace() creates a linear
spacing of values set by the 3 arguments in the parenthesis: begin, end, and how many. If you
didn't know how the function works, you can always look it up in the documentation: Numpy
Linspace

make a list called time that ranges from @ to 10 seconds.

time = np.linspace(0, 10, 10)

https://colab.research.google.com/drive/1XYIAq_pELYUnjXVZKiKqOQcB-sc7FW7q?usp=sharing
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fnumpy.org%2Fdoc%2F1.23%2Freference%2Fgenerated%2Fnumpy.linspace.html%3Fhighlight%3Dlinspace%23numpy.linspace

print(time)
[0. 1.11111111 2.22222222 3.33333333 4.44444444 5.55555556
6.666660667 7.77777778 §8.88888889 10.]

Next, we use our physics understanding to make a function for speed v, as a function of time.
The following line will create a new list speed that is populated by the basic kinematic function
that related speed, acceleration, and time.

(We'll start at rest for simplicity sake)

UV =10y + at

make a new list called speed

speed = axtime

print(speed)
[0. 5.55555556 11.11111111 16.66666667 22.22222222 27.77777778
33.33333333 38.88888889 44.44444444 50.]

Now, we can plot speed as a function of time using our two lists of values that we just created.
Make sure to label the axes (and include the units), and give the plot a title.

fig, ax = plt.subplots()

ax.plot(time, speed)

ax.set_xlabel('Time [s]')
ax.set_ylabel('Speed [m/s]"')
ax.set_title('Speed as a function of time')

plt.show()

Speed as a function of time

50 -

40 -

W
o
]

Speed [m/s]
N
o

10 -

0 2 e 6 8 10
Time [s]

We can also consider the position of the object. That will be given by:

1 5
x=x0+vot+§at

(We can assume for simplicity that x¢ and v are both zero.)

create the position list based on the equation above
we can use the np.square() function to ask for the square of each value in the ti

rather than the square of the 1-d matrix.

position = @.5%akxnp.square(time)

print(position)

[o. 3.08641975 12.34567901 27.77777778 49.38271605
77.16049383 111.11111111 151.2345679 197.5308642 250.]

Do the same plot routine, but change the speed to position

fig, ax = plt.subplots()

ax.plot(time, position, linewidth=2.0)
ax.set_xlabel('Time [s]')
ax.set_ylabel('Position [m]")
ax.set_title('Position as a function of time')

plt.show()

Position as a function of time

250 ~

200 -

150 ~

Position [m]

100 -

50 -

0 2 - 6 8 10
Time [s]

We can annotate plots too, to help explain things. Here's an example where the point halfway
through the motion is highlighted.

Qinre niir lTicecte whare 100 valiiee Tnna we ran et rall nnr enarial nnint = RN

........... e te e e muv ru e vy e wwr Jue s cuae vwr opeeau s peae v
specialPoint = 5
fig, ax = plt.subplots()

ax.plot(time, position, linewidth=2.0)
ax.set_xlabel('Time [s]')
ax.set_ylabel('Position [m]")
ax.set_title('Position as a function of time')

ax.grid()
This line adds a circular 'o' marker at the specialPoint values for time and posi
ax.plot(time[specialPoint], position[specialPoint],'o', color = 'tab:blue')

ALl of this is for the annotation.

plt.annotate("Important Data \n Point", # this is the text
xy=(time[5], position[5]), # these are the coordinates to positior
textcoords="offset points", # how to position the text
xytext=(-40,40), # distance from text to points (x,y)
ha='center',
va="'bottom',
bbox=dict(boxstyle='round,pad=0.5"', fc='white', alpha=0.2),
arrowprops=dict(arrowstyle = '—|>', connectionstyle='arc3, rad=0")

plt.show()

Position as a function of time

250 -
200 -
T 150 1 i
p Important Data
o Point
= |
%]
& 100 -
50 -
0 -
0 2 4 6 8 10
Time [s]

Now, let's plot both functions on the same graph. One will use the right axis, the other the left.

fig, ax1 = plt.subplots()

color = 'darkred'

axl.set_xlabel('time [s]')

axl.set_ylabel('Speed [m/s]', color=color)

axl.plot(time, speed, color=color)
axl.tick_params(axis='y"', labelcolor=color)
axl.set_title('Position and Speed as a function of time')

ax2 = axl.twinx() # instantiate a second axes that shares the same x-axis

color = 'darkblue'
ax2.set_ylabel('Position [m]', color=color) # we already handled the x-label with

ax2.plot(time, position, color=color)
ax2.tick_params(axis='y"', labelcolor=color)

fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.show()

Position and Speed as a function of time

50 - L 250
40 - L 200
@ 30 A - 150 ¢
E e
— [
gl S
@ =
Q v
& 20 - - 100 &
10 - 50
0 -)

0 2 4 6 8 10

time [s]

Or perhaps, it's better to separate the plots into different subplots. This example shows all the

kinematic terms, a, v, and x separated into three subplots. Note how we made a new list called

acceleration by filling an numpy array with the constant value a. The great thing about doing

plots programaticcaly, rather than in excel, is that if we wanted to redo all this for free fall on the

moon for example, where a is 1.6 m/s?, we could just redifine that variable in the beginning, and

run the whole notebook, and everything would be updated for that change.

make a list of constant valued entries
acceleration = np.full((10, 1),a)

#plot all three kinematic variables
fig, axs = plt.subplots(3, 1, figsize=(7, 7))

axs[0]
axs[0]
axs[0]
axs[0]

axs[1]
axs[1]
axs[1]

axs[2]
axs[2]
axs[2]
axs[2]

.plot(time, acceleration, color = "purple")
.set_ylabel('acceleration [m/s/s]"')
.grid(True)

.set_title('The 3 kinematic variables')

.plot(time, speed, color = "green")
.set_ylabel('speed [m/s]"')

.grid(True)

.plot(time, position, color = "darkblue")
.set_xlabel('time [s]"')

.set_ylabel('position [m]"')
.grid(True)

fig.tight_layout()
plt.show()

The 3 kinematic variables

u
N
1

o
[
L

acceleration [m/s/s]
(9]
o

> P
(o] (e}
1 1

o
N
IS
o
o
5

speed [m/s]
N W (9}
S o o 8 o
1 1 1 1 1

o
1

o
N
IS
o
o
5

250 -

200 -

150 A

100 A

position [m]

50 -

O
N
-
(o)}
o0
=

time [s]

Great. This should be a useful starting point for plotting analytic functions. To test your
understanding and further develop this skillset, try making the following modifications.

» Change the functions for speed and position to account of non-zero initial conditions (i.e.
vo, xo 7 0)

e Change the coordinate system so that the acceleration is —9.8 m/s?

e Make 3 plots like the very last example, but for a simple pendulum instead.

Colab paid products - Cancel contracts here

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription

