PHYS 20300 Formulas
Dr. James Hedberg
Updated: January 2025
Kinematics
\begin{equation}
\begin{aligned}
& \overline{\mathbf{v}} = \frac{\Delta \mathbf{x}}{\Delta t} \\[5pt]
& {\mathbf{v}} =\lim_{\Delta t \rightarrow 0} \frac{\Delta \mathbf{x}}{\Delta t} = \frac{d\mathbf{x}}{dt}\\[5pt]
& \overline{\mathbf{a}} = \frac{\Delta \mathbf{v}}{\Delta t} \\[5pt]
& {\mathbf{a}} =\lim_{\Delta t \rightarrow 0} \frac{\Delta \mathbf{v}}{\Delta t} =\frac{d\mathbf{v}}{dt}\\[5pt]
& \mathbf{v} = \mathbf{v}_0 + \mathbf{a}t \\[5pt]
& \mathbf{x} = \frac{1}{2}(\mathbf{v}_0+\mathbf{v})t \\[5pt]
& \mathbf{x} = \mathbf{x}_0 + \mathbf{v}_0 t + \frac{1}{2}\mathbf{a}t^2 \\[5pt]
&v^2 = v_0^2 + 2ax
\end{aligned}
\end{equation}
Forces
\begin{equation}
\begin{aligned}
& \sum \mathbf{F} = \mathbf{F}_\textrm{net}= m \mathbf{a} \\[5pt]
& F_\textrm{G} = G \frac{m_1 m_2}{r^2}\\[5pt]
& g = \frac{G M_E}{r^2_E} = 9.8 \;\rm m/s^2 \approx 10 \; \rm m/s^2\\[5pt]
& f_s^\textrm{max} = \mu_s F_N \\[5pt]
& f_k = \mu_k F_N \\[5pt]
& F_D = \frac{1}{2}C \rho A v^2
\end{aligned}
\end{equation}
Circular Motion
\begin{equation}
\begin{aligned}
& v = \frac{2 \pi r}{T} \\[5pt]
&a_c = \frac{v^2}{r} \\[5pt]
& v = \sqrt{\frac{G M_E}{r} }\\
\end{aligned}
\end{equation}
Work and Energy
\begin{equation}
\begin{aligned}
& W = \mathbf{F} \cdot \mathbf{s} \\[5pt]
& W = \int_{x_i}^{x_f} F(x)\; dx\\[5pt]
& KE = \frac{1}{2} mv^2\\[5pt]
& W = KE_f - KE_i \\[5pt]
& W_\textrm{grav} = mg(h_0-h_f) \\[5pt]
& PE = mgh \\[5pt]
& W_\textrm{nc} = E_f - E_0 \\[5pt]
& \overline{P} = \frac{\Delta E}{\Delta t} \\[5pt]
& \overline{P} = \mathbf{F} \cdot \mathbf{v}\\[5pt]
& F_x = -\frac{d U }{dx} \\
\end{aligned}
\end{equation}
Rotational Motion
\begin{equation}
\begin{aligned}
& \theta = \frac{s}{r} \\[5pt]
& \overline{\omega} = \frac{\Delta \theta}{\Delta t} \\[5pt]
& \overline{\alpha} = \frac{\Delta \omega}{\Delta t} \\[5pt]
& \theta = \frac{1}{2}(\omega_0+\omega)t \\[5pt]
& \theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2 \\[5pt]
& \omega^2 = \omega_0^2 + 2\alpha \theta \\[5pt]
& v_T = r \omega \\[5pt]
& a_T = r \alpha \\[5pt]
& a_c = r \omega^2 \\[5pt]
\end{aligned}
\end{equation}
Rotational Dynamics
\begin{equation}
\begin{aligned}
& \boldsymbol{\tau} = \mathbf{r} \times \mathbf{F} = r F \sin \phi \\[5pt]
& \tau = I \alpha \\[5pt]
& \tau = \frac{d \mathbf{L}}{dt} \\[5pt]
& I = \int r^2 dm \\[5pt]
& I = I_\textrm{com}+mh^2\\[5pt]
& KE_\textrm{rot} = \frac{1}{2}I \omega ^2 \\[5pt]
& L = I \omega \\[5pt]
& \mathbf{L} = \mathbf{r} \times \mathbf{p}
\end{aligned}
\end{equation}
Simple Harmonic Motion
\begin{equation}
\begin{aligned}
& x(t) = A \cos (\omega t) \\
& v(t) = - A \omega \sin (\omega t) \\
& a(t) = - A \omega^2 \cos (\omega t) \\
& f = \frac{1}{T} \\
& \omega = 2 \pi f \\
& \omega = \sqrt{\frac{k}{m}} \\
& \mathbf{F}_\textrm{sp} = -k\mathbf{x} \\[5pt]
& U_\textrm{sp} = \frac{1}{2}kx^2 \\[5pt]
& T_\textrm{pend} = 2 \pi \sqrt{ \frac{L}{g}}
\end{aligned}
\end{equation}
Momentum and Impulse
\begin{equation}
\begin{aligned}
& \mathbf{J} = \overline{\mathbf{F}} \Delta t \\
& \mathbf{p} = m \mathbf{v} \\
& \mathbf{J} = \Delta \mathbf{p}
\end{aligned}
\end{equation}
Fluids
\begin{equation}
\begin{aligned}
& \rho = \frac{m}{V} \\
& P = \frac{F}{A} \\
& P_2 = P_1 + \rho g h \\
& F_B = W_\textrm{fluid} \\
& \rho_1 A_1 v_1 = \rho_2 A_2 v_2 \\
& P_1 + \frac{1}{2} \rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g y_2 \\
\end{aligned}
\end{equation}
Temperature and Heat
\begin{equation}
\begin{aligned}
&T = T_C + 273.15 \\
&T_C = (T_F-32)* \frac{5}{9} \\
& \Delta L = \alpha L_0 \Delta T \\
& \Delta V = \beta V_0 \Delta T \\
& Q = cm \Delta T \\
& Q = mL_F \; \textrm{or} \; mL_V \\
& Q = \frac{ k A \Delta T \; t }{L}
\end{aligned}
\end{equation}
Thermodynamics
\begin{equation}
\begin{aligned}
& W = -\int P dV \\
& PV = nRT = Nk_B T \\
& U_\textrm{th-IG} = \frac{3}{2}Nk_B T \\
& \Delta U = U_f - U_i = Q + W \\
\end{aligned}
\end{equation}
Other/Constants/Physical Values
\begin{equation}
\begin{aligned}
& V_\textrm{sphere} = \frac{4}{3} \pi r^3 \\
& 1 \textrm{mL} = 1 \textrm{cc} = 1 \textrm{gram} \\
& \textrm{Mass of the Earth} (M_E) = 5.97 \times 10^{24} \; \textrm{kg}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
& \textrm{Radius of the Earth} (R_E) = 6,371 \; \textrm{km}\\
& \rho_\textrm{air} = 1.28 \; \rm kg/m^3 \\
& \rho_\textrm{water} = 1000 \; \rm kg/m^3 \\
& 1 \; \rm atm = 101,325 \; Pa \\
\end{aligned}
\end{equation}