Star Classes

Spectral Lines

Stellar spectra (negatives) for main-sequence classes O9-F5. (Since the image is a negative, the absorption lines are the bright lines)

H.A. Abt, A.B. Meinel, W.W. Morgan & J.W. Tapscott An Atlas of Low Dispersion Grating Stellar Spectra NSF? 1968

Williamina Stevens

By Unknown - http://www.cfa.harvard.edu/lib/online/almanac/0300c.htm, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9430839

Annie Jump Cannon

By New York World-Telegram and the Sun Newspaper - http://www.britannica.com/EBchecked/topic/92776/Annie-Jump-Cannon, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9431030

A more modern color spectrum showing the absorption lines from the various classes of stars.

Harvard Spectral Classification

Stellar Classes
Spectral TypeColorCharacteristics 
OHottest Blue-whiteStrong He II abs. 
BHot Blue-whiteHe 1 abs. strongest at B2 
AWhiteBalmer abs. strongest at A0Ca II abs. stronger
FYellow-whiteCa II strengthenBalmer weakens
GYellowSolar Type SpectraFe I, neutral metal lines stronger
KCool OrangeCa II strongest K0dominated by metal absorption lines
MCool Reddominated by molecular abs.  
LVery Cool dark redMetal Hydrides, Water, CO, alkalis 
TCoolest InfraredMethane (CH4)

Table .

Spectra of main sequence stars

Ap. J. Suppl 81, 865 1992

Spectra of main sequence stars

Ap. J. Suppl 81, 865 1992

How are these spectra created?

The A0 spectra

The A1 line has the most pronounced Balmer series.

Balmer is strongest. Temp is approximately 10,000 k. Can we understand why?

Balmer Lines

The Balmer series $$\begin{equation} \frac{1}{\lambda} = R_H \left( \frac{1}{2^2} - \frac{1}{n^2} \right) \end{equation}$$

The Boltzmann Distribution

$$\begin{equation} e^{-\frac{E}{kT}} \end{equation}$$

The Boltzmann Equation

$$\begin{equation} \frac{N_b}{N_a} = \frac{g_b e^{-E_b / kT}}{g_a e^{-E_a / kT}} = \frac{g_b}{g_a}e^{-(E_b-E_a)/kT} \label{eq:the-boltzmann-equation} \end{equation}$$

Find the temperature of a gas of neutral hydrogen atoms when the gas contains the same amount of ground state (n = 1) and 1st excited state hydrogen atoms.

The Saha Equation

$$\begin{equation} \frac{N_{i+1}}{N_i} = \frac{2 k T Z_{i+1}}{P_e Z_i} \left( \frac{2 \pi m_e k T}{h^2} \right)^{3/2}e^{-\chi / kT} \end{equation}$$

Given an electron pressure of 20 N m-2, we can see that 50% ionization of Hydrogen will occur at just under 10,000 K.

$$\begin{equation} \frac{N_{II}}{N_\textrm{total}} = \frac{N_{II}}{N_{I}+N_{II}} = \frac{N_{II}/N_{I}}{1+N_{II}/N_{I}} \end{equation}$$

$N_2/N_\textrm{total}$ for hydrogen based on the Boltzmann and Saha equations. The peak is just below 10,000K.

$$\begin{equation} \frac{N_2}{N_\textrm{total}} =\left(\frac{N_2/N_1}{1+ N_2/N_1}\right) \left(\frac{1}{1+ N_{II}/N_{I}}\right) \end{equation}$$

a) below 9900K, most electrons are in the ground state. b) at 9900K Balmer series jumps are most likely. c) over 9900K, the atom has ben ionized.

Hertzprung-Russell Diagram

Henry Russell's first diagram.

Spectral line strengths vs. temperature

Color & Temperature

Color Index

$$\begin{equation} T \approx \frac{9000 \; \textrm{K}}{(B-V)+0.93} \end{equation}$$

HR Diagram

A Hertzsprung-Russell (H-R) Diagram showing the relationship between several star characteristics.

Maxwell-Boltzmann Velocity

$$\begin{equation} n_v dv = n \left(\frac{m}{2 \pi kT}\right)^{3/2} \, 4\pi v^2 e^{- \frac{mv^2}{2kT}} dv \label{eq:maxwell-boltzmann-distribution} \end{equation}$$

Consider a gas of hydrogen atoms at 10000 K. What percentage of the atoms have speeds between 20000 m/s and 25000 m/s?