Inner Solar System

1. The Earth
2. Earth Structure
3. Earth Atmosphere
4. Earth Magnetosphere
5. Earth's shape
6. The Moon
7. Moon Structure
8. Formation
9. Explorations
10. Apollo Program
11. Earth Moon System
12. Tides
13. Tidal Locking
14. Moon is leaving
15. Moon Phases
16. Mercury
17. The Messenger Mission
18. Mercury - stats
19. Venus
20. Greenhouse Effect
21. Venus' Atmosphere
22. Venus' Volcanos
23. Mars
24. Mars' Atmosphere
25. Mars' Surface
26. Mars' Moons

I. The Earth

I.I Earth Structure

A schematic drawing of the major sections inside the earth

Region	Thickness	Constituents
Inner core	1300 km	Solid Iron \& Nickel
Outer core	2250 km	Liquid Iron \& Nickel
Mantle	2900 km	Rocky (heavy elements)
Crust	$8-40 \mathrm{~km}$	Rocky (lighter elements)
Atmosphere	$16-480 \mathrm{~km}$	Gasses

Deepest Hole: 12 km . Kola Superdeep Borehole

I. 2 Earth Atmosphere

Fraction (by mass)	Fraction (by number)	Species
75.5%	78.1%	$\mathrm{~N}_{2}$
23.1%	20.9%	O_{2}
1.3%	0.93%	Ar
0.05%	0.04%	CO_{2}
trace	trace	$\mathrm{Ne}, \mathrm{He}, \mathrm{CH}_{4}, \mathrm{Neon}, \mathrm{He}$, Methane, Krypton

The Atmosphere of the Earth

I. 3 Earth Magnetosphere

Origins of the Magnetosphere

Simulation of the geo-dynamo fields
Contemporary Physics, 1997, 38 4,
Glatzmaier, G. and Roberts, P.

The Dynamo Theory: Moving charges.

1. Why is the Earth magnetic?
2. Why has its magnetic field existed over at least 70% of geological time?
3. Why is it predominantly dipolar?
4. What determines its strength?
5. Why does its strength vary, but by so little?
6. Why does the magnetic compass needle point approximately North?
7. Why does the averaged geomagnetic axis coincide with the geographical axis?
8. Why does the polarity of the Earth's field reverse?
9. What happens to the geomagnetic field during a reversal and why?
10. Why does the frequency of reversals vary so greatly over geological time?
11. Why is neither polarity of field favored over the other?
12. What causes the slow secular change of the field?
13. What is the significance of the westward drift?
14. Can a single mechanism explain why other planets and satellites are magnetic http://dx.doi.org/10.1080/0010751971823540o?

Convective Motions + Coriolis forces cause motion of charges within the molten
outer core.
The Earth's Magnetic field

Strength: 25 to 65 microteslas (0.25 to 0.65 gauss).
The north magnetic pole is in Greenland
It flips sometimes. (Last time was about 780,000 years ago.)

Magnetic field

flips
USGS

What does it do?

[^0]ESA/C. T. Russel

Van Allen Probes

Johns Hopkins University Applied Physics Laboratory

The radiation belts are two donut-shaped regions of high-energy particles, mainly protons and electrons, trapped by the magnetic field of the Earth. These belts are often referred to as "The Van Allen Belts" because they were discovered by James Van Allen and his team at the University of lowa. This scientific discovery was a first for the space-age.

The inner belt reaches from 1000 km to 6000 km . It is comprised of high concentrations of electrons in the range of hundreds of keV and energetic protons with energies exceeding 100 MeV ,

The outer belt goes from 13,000 to 60000 km . Mostly contains high energy (0.1-10 MeV) electrons

I. 4 Earth's shape

Precession

The spheroid allows for a torque, which leads to a precession.

Precession

The North Pole Star changes! Just very slowly.

2. The Moon

2.5 Moon Structure

[^1]
2.6 Formation

Giant-impact hypothesis

Earth's spin and moon's orbit have similar orientations
Moon samples indicate that the Moon's surface was once molten.
The Moon has a relatively small iron core.
The Moon has a lower density than Earth.
Evidence exists of similar collisions in other star systems (that result in debris disks).
The stable-isotope ratios of lunar and terrestrial rock are identical, implying a
common origin.

Moon Formation

By NASA/JPL-Caltech -
http://www.nasa.gov/multimedia/imagegallery/image_feature_1454.html,
Public Domain,
https://commons.wikimedia.org/w/index.php?
curid=8626942

2.7 Explorations

First Touch

Luna 2: Soviet Moon Probe, September
12, 1959

By NASA -
http://nssdc.gsfc.nasa.gov/database/MasterCatalog?
sc=1959-014A, Public Domain,
https://commons.wikimedia.org/w/index.php?
curid=16509292

2.8 Apollo Program

1961 to 1972
First manned flight: 1968
First landing: Apollo 11, July 1969
Last landing: Apollo 17, Dec 1972
Missions brought back 842 lbs of rocks
Left several science experiments
Installed Retro-Reflectors
1969 events

1. Vietnam War
2. Mets win WS
3. Jet's win SB
4. Stonewall riots
5. Woodstock
6. Bread: $\$ 0.23$
7. Minimum Wage: $\$ 1.60$ per hour

3. Earth Moon System

Scale Image of Earth and Moon

3.9 Tides

Tidal Forces Sim

3.10 Tidal Locking

A torque will arise if the two angular velocities are different, due to the tidal bulge.

3.1I Moon is leaving

$3.8 \mathrm{~cm} /$ year

Lunar Laser Ranging Experiment with the stereo camera in the background (NASA image number AS11-40-5952). This Retroreflector was left on the Moon by astronauts on the Apollo 11 mission. Astronomers all over the world have reflected laser light off the reflectors to measure precisely the Earth-Moon distance.

NASA
https://www.hq.nasa.gov/office/pao/History/alsj/a11/AS11-40-5952.jpg

Tidal Braking

Over time, the tidal bulge will create a counter-torque to the rotation. This will cause the central object to rotate just a little bit slower. We can measure this:

$$
\begin{equation*}
\frac{d P_{\mathrm{rot}}}{d t}=0.0016 \mathrm{~s} / \text { century } \tag{1}
\end{equation*}
$$

But this implies a change in L ! Where does it go?

Tidal Braking

Let's start with the angular momentum L of the moon in orbit around the earth. It depends on the mass of the moon, its speed and its distance from the center of rotation.

$$
\begin{equation*}
L_{\text {orbit }}=M_{\text {moon }} v r=M_{\text {moon }}\left(\frac{G M_{\mathrm{E}}}{r}\right)^{(1 / 2)} r=\left(G M_{\mathrm{E}} M_{\text {moon }}^{2} r\right)^{(1 / 2)} \tag{2}
\end{equation*}
$$

Consider the change in angular momentum as a function of time:

$$
\begin{equation*}
\frac{d L_{\text {orbit }}}{d t}=\left(G M_{\mathrm{E}} M_{\text {moon }}^{2}\right)^{(1 / 2)} \frac{1}{2} r^{-1 / 2} \frac{d r}{d t} \tag{3}
\end{equation*}
$$

If the earth and moon are considered the only two bodies in the system, then any change in ang. momentum of the moon will have to be balanced by a change in angular momentum of the earth, i.e. the earth's rotation speed.

$$
\begin{equation*}
\frac{d L_{\text {orbit }}}{d t}=-\frac{d L_{\mathrm{rot}}}{d t} \tag{4}
\end{equation*}
$$

For a rotating body, the angular momentum is a product of the moment of inertia, I, and the angular velocity, ω :

$$
\begin{equation*}
L_{\mathrm{rot}}=I \omega \tag{5}
\end{equation*}
$$

Considering the earth a sphere:

$$
\begin{equation*}
I=\frac{2}{5} M_{\mathrm{E}} R_{\mathrm{E}}^{2} \tag{6}
\end{equation*}
$$

which leads to:

$$
\begin{equation*}
L_{\mathrm{rot}}=\frac{2}{5} M_{\mathrm{E}} R_{\mathrm{E}}^{2}\left(\frac{2 \pi}{P_{\mathrm{rot}}}\right) \tag{7}
\end{equation*}
$$

where $P_{\text {rot }}$ is the rotational period. Considering the first time derivative:

$$
\begin{equation*}
\frac{d L_{\mathrm{rot}}}{d t}=\frac{4 \pi M_{\mathrm{E}} R_{\mathrm{E}}^{2}}{5}\left(-\frac{1}{P_{\mathrm{rot}}^{2}} \frac{d P_{\mathrm{rot}}}{d t}\right) \tag{8}
\end{equation*}
$$

Using (3), and the conservation of angular momentum, we obtain:

$$
\begin{equation*}
\frac{\left(G M_{\mathrm{E}} M_{\mathrm{moon}}^{2}\right)^{1 / 2}}{2 r^{1 / 2}} \frac{d r}{d t}=\frac{4 \pi M_{\mathrm{E}} R_{\mathrm{E}}^{2}}{5 P_{\mathrm{rot}}^{2}} \frac{d P_{\mathrm{rot}}}{d t} \tag{9}
\end{equation*}
$$

Rearranging for $d r / d t$:

$$
\begin{equation*}
\frac{d r}{d t}=\frac{8 \pi}{5}\left(\frac{M_{\mathrm{E}} r}{G}\right)^{1 / 2} \frac{R_{\mathrm{E}}^{2}}{M_{\mathrm{moon}} P_{\mathrm{rot}}^{2}} \frac{d P_{\mathrm{rot}}}{d t} \tag{10}
\end{equation*}
$$

$d P / d t$ is measurable:

$$
\begin{equation*}
\frac{d P_{\mathrm{rot}}}{d t}=0.0016 \mathrm{~s} / \text { century } \tag{11}
\end{equation*}
$$

Putting this into (10) yields a rate of motion as:

$$
\begin{equation*}
\frac{d r}{d t} \approx 4 \mathrm{~cm} / \mathrm{yr} \tag{12}
\end{equation*}
$$

3.12 Moon Phases

The moon in orbit showing its phases.

4. Mercury

This high-resolution mosaic of WAC images shows Mercury as it appeared to MESSENGER as the spacecraft departed the planet following the mission's first flyby of Mercury.

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Mariner 10 spacecraft - launched
November 3, 1973, Mercury 1st flyby March 1974

By NASA / Jet Propulsion Laboratory -
http://solarsystem.nasa.gov/multimedia/display.cfm?
IM_ID=1563http://www.nasa.gov/multimedia/imagegallery/image_feature_1483.html,
Public Domain,
https://commons.wikimedia.org/w/index.php?
curid=1182348

4.13 The Messenger Mission

It's not hard to get to Mercury, but it's hard to slow down and stop there. It takes less energy to leave the solar system all togethers than it does to get to mercury and slow down enough to get into orbit.

The complicated trajectory to get to Mercury.

The 1 st science orbit

By NASA, Jet Propulsion Laboratory, Applied Physics Laboratory - MESSENGER
Website, Public Domain,
https://commons.wikimedia.org/w/index.php? curid=15235525

4.14 Mercury - stats

- Atmosphere: None!
- Temperature

1. Daytime: 700 K at equatorial noon
2. Nighttime: 100K at polar regions

- Interior:

1. Little is known (hard to get to)
2. Probably has iron-rich interior
3. Probably has very thin silicate crust
4. Probably has some molten material in core - observed magnetic field is weak

Mercury rotates 3 times during 2 orbits.

Orbital and Rotational Periods

Orbital Period	87.969 Earth Days
Rotation Period	58.646 Earth Days

The Ratio of Orbit to Rotation is

$$
\begin{equation*}
\frac{87.969}{58.646}=1.5 \tag{13}
\end{equation*}
$$

Phase locked due to solar "tidal" effect. The eccentricity of Mercury makes the ratio 3:2 as opposed to $1: 1$ like the moon.
Half a mercurial day lasts one Mercurial Year
A day on Mercury

5. Venus

NASA/Goddard Space Flight Center
Scientific Visualization Studio.

Physical Parameters

Mass	$4.867 \times 10^{24} \mathrm{~kg}$	$0.815 \mathrm{M}_{\mathrm{E}}$
Radius	$6,051.8 \mathrm{~km}$	$0.9499 \mathrm{M}_{\mathrm{E}}$
Year	224.701 days	0.615 years
Rotation	once every 243 Earth days	Clockwise!
Eccentricity	0.006772	(nearly circular)
Magnetic Field	None	(due to slow rotation)

Venus is very much like the earth in its basic physical properties (mass, radius). However, that's where the similarity ends. Its temperature is much hotter, atmosphere much thicker, rotation speed much slower. No moon. Nearly spherical due to slow rotation speed. No magnetic field

5.I5 Greenhouse Effect

How hot would a planet be, if it didn't have an atmosphere?
a is the albedo, or how much energy is reflected.
($1=$ all of it, $0=$ none of it.)

A planet is located a distance D away from an energy source.

The Luminosity of the sun is:

$$
\begin{equation*}
L_{\mathrm{Sun}}=4 \pi R_{\mathrm{Sun}} \sigma_{\mathrm{SB}} T_{\mathrm{Sun}}^{4} \tag{14}
\end{equation*}
$$

Now consider a planet a distance D away from the sun. The power received by the planet would just be the ratio of its cross section to a sphere of radius D. The energy received per second will be

$$
\begin{equation*}
P_{\mathrm{in}}=L_{\mathrm{Sun}}(1-a)\left(\frac{\pi R_{p}^{2}}{4 \pi D^{2}}\right) \tag{15}
\end{equation*}
$$

If the planet radiates as a blackbody, then:

$$
\begin{equation*}
P_{\mathrm{out}}=4 \pi R_{p}^{2} \sigma_{\mathrm{SB}} T_{p}^{4} \tag{16}
\end{equation*}
$$

In thermodynamic equilibrium: $P_{\text {out }}=P_{\text {in }}$
Thus, we can say:

$$
\begin{equation*}
L_{\mathrm{Sun}}(1-a)\left(\frac{\pi R_{p}^{2}}{4 \pi D^{2}}\right)=4 \pi R_{p}^{2} \sigma_{\mathrm{SB}} T_{p}^{4} \tag{17}
\end{equation*}
$$

Solving for T_{p}

$$
\begin{equation*}
T_{p}=T_{\mathrm{Sun}}(1-a)^{1 / 4} \sqrt{\frac{R_{\mathrm{Sun}}}{2 D}} \tag{18}
\end{equation*}
$$

Putting number relevant to the Earth and Sun in to this equation, yields a temperature for the earth equal to $255 \mathrm{~K}=-19^{\circ} \mathrm{C}=-1^{\circ}$
F. Obviously, we're missing something from this analysis: the greenhouse effect. Take away: the greenhouse effect is real.

https://www.weather.gov/jetstream/absorb

5.16 Venus' Atmosphere

- Top of clouds is 250 K , however, at the surface the temperature is 750 K , above the melting point of Lead.
- Atmospheric Carbon Dioxide prevents outgoing infrared radiation.
- Pressure at the surface is about 90 atm .


```
The Soviet Union's Venera 14 probe
captured two color panoramas of Venus's
surface in 1982. This panorama came
from the rear camera. Russian Academy
of Sciences / Ted Stryk
https://www.planetary.org/space-
images/venus-surface-panorama-from-
venera-14-camera-2
```


5.I7 Venus' Volcanos

- More volcanos than any other object in the solar system. (>1500 major)
- Unclear if they are active or not.

6. Mars

Mars, from space. Mosaic of the Valles Marineris hemisphere of Mars projected into point perspective, a view similar to that which one would see from a spacecraft. The distance is 2500 kilometers from the surface of the planet, with the scale being $.6 \mathrm{~km} / \mathrm{pixel}$.

Physical Parameters

Mass	$6.42 \times 10^{23} \mathrm{~kg}$	$0.107 M_{\mathrm{E}}$
Radius	3397 km	$0.533 M_{\mathrm{E}}$
Year	686.9 days	1.8807 years
Rotation	24 h 37 min 22.6 s	
Eccentricity	0.0934	Probably larger in the past
Magnetic Field	Weak	

6.18 Mars' Atmosphere

The atmosphere of Mars is mainly composed of carbon dioxide (95 \%). It contains only 2% nitrogen and 0.1-0.4 \% oxygen.
The air pressure is only 5-8 mbar. Much has been lost. No greenhouse effect.

6.19 Mars' Surface

It's red: Iron Oxide aka rust.
Polar Caps: water ice and CO_{2}
Indications are that water has flowed on Mars in the past. Geologic features like river beds and other erosion indicators suggest this. No liquid water has been found on the surface. Too cold and the pressure is too low.

Mars may have had oceans
NASA's Goddard Space Flight Center

6.20 Mars' Moons

The small moon Deimos European Mars Express Mission

Two relatively small moons: Phobos and Deimos

The size of Phobos is roughly $27 \mathrm{~km} \times 21$ $\mathrm{km} \times 19 \mathrm{~km}$, and the orbital period around Mars is only 7 h 39 min .

Deimos is smaller. Its diameter is $15 \mathrm{~km} \times$ $12 \mathrm{~km} \times 11 \mathrm{~km}$. The orbital period of Deimos is slightly over 30 hours.

Mars' Larger moon Phobos
European Mars Express Mission

[^0]: Illustration of Earth's magnetic field

[^1]: Lunar internal structure

